精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)是定义在区间[a-1,2a]上的奇函数,则实数a的值为(  )
A.0B.1C.$\frac{1}{3}$D.不确定

分析 由于奇函数的定义域必然关于原点对称,可得a-1=-2a,即可求出a的值.

解答 解:由于奇函数的定义域必然关于原点对称,由已知必有a-1=-2a,得a=$\frac{1}{3}$.
故选:C.

点评 本题主要考查函数的奇偶性的判断,利用了奇函数的定义域必然关于原点对称,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知函数f(x)=sin(2x+φ),其中φ为实数,若$f(x)≤|{f(\frac{π}{3})}|$对于任意x∈R恒成立,且$f(\frac{π}{2})>f(π)$,则$f(\frac{5π}{12})$的值为(  )
A.$-\frac{{\sqrt{3}}}{2}$B.0C.$\frac{1}{2}$D.$\frac{{\sqrt{3}}}{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

18.已知m=3a=5b,若$\frac{1}{a}$+$\frac{1}{b}$=1,则m=15.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.定义在R上的函数f(x)满足f(x+y)=f(x)+f(y)+2xy(x,y∈R),f(1)=2,求f(0)和f(-2)的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.设函数f(x)=|x+a2|+|x-b2|,其中a,b为实数,
(1)若a2+b2-2a+2b+2=0,解关于x的不等式f(x)≥3;
(2)若a+b=4,证明:f(x)≥8.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知A={x|x是菱形},B={x|x是矩形},求A∩B.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.已知x>0,当x=$\frac{\sqrt{2}}{2}$时,x+$\frac{1}{2x}$的最小值是2.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=log2(1+x)+alog2(1-x),a∈R的图象关于原点对称.
(1)求a的值;
(2)判断并证明y=f(x)的单调性; 
(3)求f(x)>0的解集.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=1og4(4x+1)+kx(x∈R)是偶函数.
(1)求实数k的值;
(2)若函数g(x)=f(x)-m有零点,求实数m的取值范围.

查看答案和解析>>

同步练习册答案