精英家教网 > 高中数学 > 题目详情
2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{3}$,且过点$(1,\frac{{\sqrt{3}}}{2})$.(1)求椭圆C的方程;
(2)设椭圆C的长轴在左右端点分别为A、B,P为直线:x=-2任一点,过P作椭圆C的切线l,切点为C,CD⊥AB.
①求证:PB平分线段CD;
②求△PBC面积的最大值,并求此时C点坐标.

分析 (1)利用椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{3}$,且过点$(1,\frac{{\sqrt{3}}}{2})$,建立方程,求出a,b,即可求椭圆C的方程;
(2)①求出B的坐标,即可证明PB平分线段CD;
②表示出△PBC面积,可得最大值,并求此时C点坐标.

解答 (1)解:∵椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{3}$,且过点$(1,\frac{{\sqrt{3}}}{2})$,
∴2c=2$\sqrt{3}$,$\frac{1}{{a}^{2}}$+$\frac{\frac{3}{4}}{{b}^{2}}$=1,
∴c=$\sqrt{3}$,a=2,b=1,
∴椭圆C的方程为$\frac{{x}^{2}}{4}+{y}^{2}$=1;
(2)①证明:设C(x1,y1),则切线PC的方程为$\frac{{x}_{1}}{4}x+{y}_{1}y$=1,
令x=-2,可得y=$\frac{1}{{y}_{1}}$+$\frac{{x}_{1}}{2{y}_{1}}$,即P(-2,$\frac{1}{{y}_{1}}$+$\frac{{x}_{1}}{2{y}_{1}}$),
∵B(2,0),∴直线PB的方程为y-0=-$\frac{1}{4}$($\frac{1}{{y}_{1}}$+$\frac{{x}_{1}}{2{y}_{1}}$)(x-2),
令x=x1,则y=$\frac{1}{2}$y1
∴PB平分线段CD;
②解:由①切线PC的方程为$\frac{{x}_{1}}{4}x+{y}_{1}y$=1,令y=0,可得x=$\frac{4}{{x}_{1}}$,
∴△PBC面积=$\frac{1}{2}•$($\frac{4}{{x}_{1}}$-2)•|$\frac{1}{{y}_{1}}$+$\frac{{x}_{1}}{2{y}_{1}}$-y1|=|$\frac{4-{{x}_{1}}^{2}}{4{y}_{1}}$|=|y1|≤1
∴△PBC面积的最大值为1,此时C点坐标为(0,1)或(0,-1).

点评 本题考查椭圆的方程与性质,考查直线与椭圆的位置关系,考查三角形面积的计算,考查学生分析解决问题的能力,有难度.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

6.某大学在自主招生面试环节中.七位评委老师为陈小伟,李小明打出了分数,要求统计组、复核组依次打出的分数进行统计,复核组拿到了有两处污染的成绩单(成绩为40-100的整数)如表
 考生姓名评委01  评委02 评委03 评委04 评委05 评委06 评委07
 陈小伟 99 70 85 84 8■ 85 81
 李小明 79 9■ 84 84 86 8487 
(1)统计组使用茎叶图记录了两位同学的成绩,若评委05给陈小伟打出的分数为84分,评委02给李小明打出的分数为91分.请你结合两处污染的成绩单数据完成两位同学成绩的茎叶图1,并比较两位同学成绩的稳定性.
(2)若复合组将考生成绩去掉一个最高分和一个最低分,根据有两处污染的成绩单,你能否判断出两位同学平均水平的高低?
(3)该大学用系统抽样的方法抽取了n名学生的面试成绩,制作了如图2所示的频率分布直方图.
①已知图表中第四小组(即[70,80)内)的频数为15,求n的值;
②请你根据图表中的信息估计样本的众数,中位数,平均数(精确到0.01)
参考公式:假设样本数据是x1,x2,…xn,$\overline{x}$,s分别表示这组数据的平均数和标准差,则:
s=$\sqrt{\frac{({x}_{1}-\overline{x})^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}-\overline{x})^{2}}{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数z满足iz=1-2i(i为虚数单位),则z的虚部为(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知A,B,C依次成等差数列,且$b=\sqrt{3}$,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知f(x)=2|x-2|+|x+1|
(1)求不等式f(x)<6的解集;
(2)设m,n,p为正实数,且m+n+p=f(2),求证:mn+np+pm≤3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤3}\\{x-y≥-1}\\{y≥1}\end{array}\right.$,则z=x-2y的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,锐角三角形ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为圆I与边CA的切点.
(1)求证A,I,H,E四点共圆;
(2)若∠C=50°,求∠IEH的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,△ABC的角平分线AD的延长线交它的外接圆于点E.
(1)证明:$\frac{AB}{AE}$=$\frac{AD}{AC}$;
(2)若△ABC的面积S=$\frac{1}{2}$AD•AE,求∠BAC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2ax2+bx+1(e为自然对数的底数).
(1)若$a=\frac{1}{2}$,求函数F(x)=f(x)ex的单调区间;
(2)若b=e-1-2a,方程f(x)=ex在(0,1)内有解,求实数a的取值范围.

查看答案和解析>>

同步练习册答案