精英家教网 > 高中数学 > 题目详情
11.如图,△ABC的角平分线AD的延长线交它的外接圆于点E.
(1)证明:$\frac{AB}{AE}$=$\frac{AD}{AC}$;
(2)若△ABC的面积S=$\frac{1}{2}$AD•AE,求∠BAC的大小.

分析 (1)运用同弧所对圆周角相等与角平分线性质,构造两个三角形相似,从而证明出$\frac{AB}{AE}$=$\frac{AD}{AC}$;
(2)利用三角形的面积公式构造出等式,求出sin∠BAC的值,继而求出∠BAC的大小.

解答 解:(1)证明:∵AD是△ABC的角平分线,
∴∠BAE=∠DAC,
又$\widehat{AB}$所对的圆周角相等,即∠BEA=∠DCA.
∴在△ABE与△ACD中,
∠BAE=∠DAC,∠BEA=∠DCA,
∴△ABE∽△ADC,
∴$\frac{AB}{AE}=\frac{AD}{AC}$.
(2)由(1)知$\frac{AB}{AE}$=$\frac{AD}{AC}$,所以有AB•AC=AD•AE.
又△ABC的面积S=$\frac{1}{2}$AD•AE=$\frac{1}{2}$AB•AC=$\frac{1}{2}AB•ACsin∠BAC$.
∴$sin∠BAC=\frac{π}{2}$,故$∠BAC=\frac{π}{2}$.

点评 本题主要考查了通过两个角相等证明三角形相似的方法,通过三角形的面积公式构造成等式,求解∠BAC的大小.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

15.点P(3,-2,4)关于平面yOz的对称点Q的坐标为(  )
A.(-3,-2,4)B.(3,2,-4)C.(3,2,4)D.(-3,-2,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知椭圆C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的焦距为2$\sqrt{3}$,且过点$(1,\frac{{\sqrt{3}}}{2})$.(1)求椭圆C的方程;
(2)设椭圆C的长轴在左右端点分别为A、B,P为直线:x=-2任一点,过P作椭圆C的切线l,切点为C,CD⊥AB.
①求证:PB平分线段CD;
②求△PBC面积的最大值,并求此时C点坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在直角△ABC中,AB⊥BC,D为BC边上异于B、C的一点,以AB为直径作⊙O,并分别交AC,AD于点E,F.
(Ⅰ)证明:C,E,F,D四点共圆;
(Ⅱ)若D为BC的中点,且AF=3,FD=1,求AE的长.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.当0<x≤$\frac{1}{2}$时,4x<logax(a>0且a≠1),则a的取值范围是(  )
A.(0,$\frac{{\sqrt{2}}}{2}$)B.($\frac{{\sqrt{2}}}{2}$,1)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.已知函数f(x)=x-$\frac{1}{x}$-alnx(a∈R).
(1)求f(x)的单调区间;
(2)设g(x)=f(x)+2alnx,且g(x)有两个极值点xl,x2,其中x1∈(0,e],求g(x1)-g(x2)的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.己知三棱锥的三视图如图所示,其主视图、侧视图、俯视图的面积分别为1,$\frac{3}{2}$,3,则该三棱锥的外接球体积为(  )
A.$\frac{28\sqrt{14}}{3}$πB.$\frac{56\sqrt{14}}{3}$πC.$\frac{7\sqrt{14}}{3}$πD.$\frac{7\sqrt{14}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.已知a>0,b>0,b为常数,函数f(x)=ax-bx2
(I)若对x∈R都有f(x)≤1,且当x∈[0,1]时,f(x)为单调函数,证明:b≤1;
(Ⅱ)若对任意x∈[0,1],都|f(x)|≤1,求a的范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

1.设偶函数f(x)满足f(x)=x3-8(x≥0),则{x|f(x-1)>0}=(  )
A.{x|x<-2或x>3}B.{x|x<0或x>2}C.{x|x<0或x>3}D.{x|x<-1或x>3}

查看答案和解析>>

同步练习册答案