精英家教网 > 高中数学 > 题目详情
3.己知三棱锥的三视图如图所示,其主视图、侧视图、俯视图的面积分别为1,$\frac{3}{2}$,3,则该三棱锥的外接球体积为(  )
A.$\frac{28\sqrt{14}}{3}$πB.$\frac{56\sqrt{14}}{3}$πC.$\frac{7\sqrt{14}}{3}$πD.$\frac{7\sqrt{14}}{6}$

分析 几何体是一个三棱锥,一条侧棱与底面垂直,底面是一个直角三角形,根据正视图、侧视图、俯视图面积分别是1,$\frac{3}{2}$,3.求出三条边的长度,这个三棱锥的外接球也是以这个三棱锥三条侧棱为棱的长方体的外接球,做出长方体的对角线,求出三棱锥的外接球体积.

解答 解:由题意知几何体是一个三棱锥,一条侧棱与底面垂直,底面是一个直角三角形,
∵正视图、侧视图、俯视图面积分别是1,$\frac{3}{2}$,3,
设出三条互相垂直的棱长是x,y,z,
有xz=2,yz=3,xy=6,
∴x=2,y=3,z=1
这个三棱锥的外接球也是以这个三棱锥三条侧棱为棱的长方体的外接球,
长方体的对角线长是$\sqrt{4+9+1}$=$\sqrt{14}$,三棱锥的外接球的半径为$\frac{\sqrt{14}}{2}$,
∴三棱锥的外接球体积是$\frac{4}{3}π•(\frac{\sqrt{14}}{2})^{3}$=$\frac{7\sqrt{14}}{3}$π,
故选:C.

点评 本题考查球和几何体之间的关系,本题解题的关键是根据三条侧棱两两垂直的关系得到由这三条侧棱构成的长方体,从而得到三棱锥的外接球体积.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

7.复数z满足iz=1-2i(i为虚数单位),则z的虚部为(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,锐角三角形ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为圆I与边CA的切点.
(1)求证A,I,H,E四点共圆;
(2)若∠C=50°,求∠IEH的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.如图,△ABC的角平分线AD的延长线交它的外接圆于点E.
(1)证明:$\frac{AB}{AE}$=$\frac{AD}{AC}$;
(2)若△ABC的面积S=$\frac{1}{2}$AD•AE,求∠BAC的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.如图,为了测量A、C两点间的距离,选取同一平面上B、D两点,测出四边形ABCD各边的长度(单位:km):AB=5,BC=8,CD=3,DA=5,且∠B与∠D互补,则AC的长为(  )km.
A.7B.8C.9D.6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知第一象限内的点M既在双曲线C1:$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)上,又在抛物线C2:y2=2px上,设C1的左,右焦点分别为F1、F2,若C2的焦点为F2,且△MF1F2是以MF1为底边的等腰三角形,则双曲线的离心率为(  )
A.$\sqrt{2}$B.$\sqrt{3}$C.1+$\sqrt{2}$D.2+$\sqrt{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.把三枚硬币一起抛出,出现2枚正面向上,一枚反面向上的概率是(  )
A.$\frac{2}{3}$B.$\frac{3}{8}$C.$\frac{1}{8}$D.$\frac{5}{8}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=2ax2+bx+1(e为自然对数的底数).
(1)若$a=\frac{1}{2}$,求函数F(x)=f(x)ex的单调区间;
(2)若b=e-1-2a,方程f(x)=ex在(0,1)内有解,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.某校高一举行了一次数学竞赛,为了了解本次竞赛学生的成绩情况,从中抽取了部分学生的分数(得分取正整数,满分为100)作为样本(样本容量为n)进行统计,按照[50,60),[60,70),[70,80),[80,90),[90,100]的分组作出频率分布直方图,已知得分在[50,60),[90,100]的频数分别为8,2.
(1)求样本容量n和频率分布直方图中的x,y的值;
(2)估计本次竞赛学生成绩的中位数;
(3)在选取的样本中,从竞赛成绩在80分以上(含80分)的学生中随机抽取2名学生,求所抽取的2名学生中至少有一人得分在[90,100]内的概率.

查看答案和解析>>

同步练习册答案