精英家教网 > 高中数学 > 题目详情
18.如图,为了测量A、C两点间的距离,选取同一平面上B、D两点,测出四边形ABCD各边的长度(单位:km):AB=5,BC=8,CD=3,DA=5,且∠B与∠D互补,则AC的长为(  )km.
A.7B.8C.9D.6

分析 分别在△ACD,ABC中使用余弦定理计算cosB,cosD,令cosB+cosD=0解出AC.

解答 解:在△ACD中,由余弦定理得:cosD=$\frac{A{D}^{2}+C{D}^{2}-A{C}^{2}}{2AD•CD}$=$\frac{34-A{C}^{2}}{30}$,
在△ABC中,由余弦定理得:cosB=$\frac{A{B}^{2}+B{C}^{2}-A{C}^{2}}{2AB•BC}$=$\frac{89-A{C}^{2}}{80}$.
∵B+D=180°,∴cosB+cosD=0,即$\frac{34-A{C}^{2}}{30}$+$\frac{89-A{C}^{2}}{80}$=0,
解得AC=7.
故选:A.

点评 本题考查了余弦定理解三角形,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.已知A(2,0),B(0,2),直线1:kx-y-k-1=0与线段AB有公共点,则l的斜率k的范围是(  )
A.(-∞,-3]∪[1,+∞)B.[-3,1]C.[1,+∞)D.(-∞,-3]

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,据气象部门预报,在距离某码头南偏东45°方向600km处的热带风暴中心正以20km/h的速度向正北方 向移动,距风暴中心450km以内的地区都将受到影响,则该码头将受到热带风暴影响的时间为(  )
A.14hB.15hC.16h?D.17h

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.当0<x≤$\frac{1}{2}$时,4x<logax(a>0且a≠1),则a的取值范围是(  )
A.(0,$\frac{{\sqrt{2}}}{2}$)B.($\frac{{\sqrt{2}}}{2}$,1)C.(1,$\sqrt{2}$)D.($\sqrt{2}$,2)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=f(x)对于任意x∈R有$f(x+1)=-\frac{1}{f(x)}$,且当x∈[-1,1]时,f(x)=x2+1,则以下命题正确的是:
①函数数y=f(x)是周期为2的偶函数;
②函数y=f(x)在[2,3]上单调递增;
③函数$y=f(x)+\frac{4}{f(x)}$的最大值是4;
④若关于x的方程[f(x)]2-f(x)-m=0有实根,则实数m的范围是[0,2];
⑤当x1,x2∈[1,3]时,$f(\frac{{{x_1}+{x_2}}}{2})≥\frac{{f({x_1})+f({x_2})}}{2}$.
其中真命题的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.己知三棱锥的三视图如图所示,其主视图、侧视图、俯视图的面积分别为1,$\frac{3}{2}$,3,则该三棱锥的外接球体积为(  )
A.$\frac{28\sqrt{14}}{3}$πB.$\frac{56\sqrt{14}}{3}$πC.$\frac{7\sqrt{14}}{3}$πD.$\frac{7\sqrt{14}}{6}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知等差数列{an}的前n项和为Sn,a3=5,S5=3S3-2.
(1)求{an}的通项公式;
(2)设${b_n}=\frac{1}{{{a_n}{a_{n+1}}}}$,求数列{bn}的前n项和为Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.如图所示,PA为圆O的切线,A为切点,PO交圆O于B、C两点,PA=3,PB=1,∠BAC的角平分线与BC和圆O分别交于点D和E.
(I)求证PA•DC=PC•DB;
(Ⅱ)求 AD•AE的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知椭圆C:$\frac{x^2}{a^2}$+$\frac{y^2}{b^2}$=1(a>b>0)短轴的两个顶点与右焦点的连线构成等边三角形,椭圆C上任意一点到椭圆左右两个焦点的距离之和为4.
(Ⅰ)求椭圆C的方程;
(Ⅱ)椭圆C与X轴负半轴交于点A,直线过定点(-1,0)交椭圆于M,N两点,求△AMN面积的最大值.

查看答案和解析>>

同步练习册答案