| A. | $\sqrt{2}$ | B. | $\sqrt{3}$ | C. | 1+$\sqrt{2}$ | D. | 2+$\sqrt{3}$ |
分析 根据条件得到抛物线和双曲线的焦点相同,根据双曲线和抛物线的定义得到△MF1F2为等腰直角三角形,利用定义建立方程进行求解即可.
解答
解∵设C1的左,右焦点分别为F1、F2,若C2的焦点为F2,
∴抛物线的准线方程为x=-c,
若△MF1F2是以MF1为底边的等腰三角形,
由于点M也在抛物线上,
∴过M作MA垂直准线x=-c
则MA=MF2=F1F2,
则四边形AMF2F1为正方形,
则△MF1F2为等腰直角三角形,
则MF2=F1F2=2c,MF1=$\sqrt{2}$MF2=2$\sqrt{2}$c,
∵MF1-MF2=2a,
∴2$\sqrt{2}$c-2c=2a,
则($\sqrt{2}$-1)c=a,
则离心率e=$\frac{c}{a}$=$\frac{1}{\sqrt{2}-1}$=1+$\sqrt{2}$,
故选:C
点评 本题主要考查双曲线离心率的计算,根据双曲线和抛物线的定义得到△MF1F2为等腰直角三角形是解决本题的关键.考查学生的转化和推理能力.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{28\sqrt{14}}{3}$π | B. | $\frac{56\sqrt{14}}{3}$π | C. | $\frac{7\sqrt{14}}{3}$π | D. | $\frac{7\sqrt{14}}{6}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 必然事件 | B. | 不可能事件 | ||
| C. | 随机事件 | D. | 以上选项均有可能 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 7 | B. | 8 | C. | 9 | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 顺序结构 | B. | 顺序结构、选择结构 | ||
| C. | 条件结构 | D. | 顺序结构、选择结构、循环结构 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com