分析 由等差数列的性质,三角形内角和定理可得B,由正弦定理,三角函数恒等变换的应用可得a+c=2$\sqrt{3}$sin(A+$\frac{π}{6}$),结合A的范围,利用正弦函数的图象和性质即可求a+c的取值范围.
解答 (本题满分为10分)
解:∵角A,B,C成等差数列,可得:2B=A+C,又A+B+C=3B=π,
∴$B=\frac{π}{3}$…(2分)
根据正弦定理可得:$\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}=2$,
∴a=2sinA,c=2sinC,
∴$a+c=2sinA+2sinC=2sinA+2sin(A+\frac{π}{3})$=$2(\frac{3}{2}sinA+\frac{{\sqrt{3}}}{2}cosA)=2\sqrt{3}sin(A+\frac{π}{6})$,…(6分)
又∵△ABC为锐角三角形,
则$\frac{π}{6}<A<\frac{π}{2},\frac{π}{3}<A+\frac{π}{6}<\frac{2π}{3}$,…(8分)
∴$sin(A+\frac{π}{6})∈(\frac{{\sqrt{3}}}{2},1]$,
∴$a+c∈(3,2\sqrt{3}]$.…(10分)
点评 本题考查正弦定理,等差数列的性质,正弦函数的图象和性质的综合应用,考查学生分析解决问题的能力,属于中档题.
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | $\sqrt{10}$ | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,-2,4) | B. | (3,2,-4) | C. | (3,2,4) | D. | (-3,-2,-4) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 9π | B. | π | C. | 2π | D. | 由m的值而定 |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com