精英家教网 > 高中数学 > 题目详情
15.直线AB为圆的切线,切点为B,点C在圆上,∠ABC的角平分线BE交圆于点E,DB垂直BE交圆于点D.
(1)证明:DB=DC;
(2)设圆的半径为1,BC=3,延长CE交AB于点F,求△BCF外接圆的半径.

分析 (1)构造辅助线DE,交BC于点G.由弦切角定理,圆上的同弧,等弧的性质,通过导角,可以得知∠CBE=∠BCE,BE=CE,又因为DE为直径,即∠DCE=90°,由勾股定理可证得DB=DC;
(2)由(1)可得DG是BC的中垂线,即可求得BG的长度.设DE的中点为O,连结BO,求得∠BOG=60°,通过导角,可得CF⊥BF,即可求得Rt△BCF外接圆的半径.

解答 (1)证明:连结DE,交BC于点G.
由弦切角定理得,∠ABE=∠BCE.
而∠ABE=∠CBE,
故∠CBE=∠BCE,BE=CE.
又因为DB⊥BE,
所以DE为直径,∠DCE=90°,
由勾股定理可得DB=DC.
(2)解:由(1)知,∠CDE=∠BDE,DB=DC,
故DG是BC的中垂线,
所以BG=$\frac{{\sqrt{3}}}{2}$.
设DE的中点为O,连结BO,则∠BOG=60°.
从而∠ABE=∠BCE=∠CBE=30°,
所以CF⊥BF,
故Rt△BCF外接圆的半径等于$\frac{{\sqrt{3}}}{2}$.

点评 本题考查弦切角定理和勾股定理,考查学生灵活转化问题的能力,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(3-x),(x≤0)}\\{f(x-3)+1,(x>0)}\end{array}\right.$,则f(20)=(  )
A.3B.4C.5D.log${\;}_{\frac{1}{2}}$17

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若a为正实数,函数f(x)=-x2+2ax+1,其中x∈[0,2],求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,长方体ABCD-A1B1C1D1中,AB=2,AD=AA1=1,点E是棱AB的中点
(1)求证:B1C∥平面A1DE;
(2)求异面直线B1C与A1E所成角的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知A,B,C依次成等差数列,且$b=\sqrt{3}$,求a+c的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.△ABC的内角A,B,C对边分别为a,b,c,已知向量$\overrightarrow{m}$=(b,2c),$\overrightarrow{n}$=(sinB,sinA),且$\overrightarrow{m}$∥$\overrightarrow{n}$,c=3,cosB=$\frac{1}{3}$.
(1)求b;
(2)求$cos(2B-\frac{π}{6})$.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤3}\\{x-y≥-1}\\{y≥1}\end{array}\right.$,则z=x-2y的最小值为-3.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.一货轮航行到M处,测得灯塔S在货轮的北偏东15°,与灯塔S相距20海里,随后货轮按北偏西30°的方向航行30分钟后,又测得灯塔S在货轮的东北方向,则货轮的速度为(  )
A.20($\sqrt{6}$+$\sqrt{2}$)B.20($\sqrt{6}$-$\sqrt{2}$)C.20($\sqrt{6}$+$\sqrt{3}$)D.20($\sqrt{6}$-$\sqrt{3}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.函数f(x)=(x2-a)e1-x,a∈R
(Ⅰ)讨论函数f(x)的单调性;
(Ⅱ)当f(x)有两个极值点x1,x2(x1<x2)时,总有x2f(x1)≤λ[f′(x1)-a(e${\;}^{1-{x}_{1}}$+1)](其中f′(x)为f(x)的导函数),求实数λ的值.

查看答案和解析>>

同步练习册答案