精英家教网 > 高中数学 > 题目详情
14.若向量$\overrightarrow{a}$=(-1,-1),$\overrightarrow{b}$=(-1,1),则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.$\sqrt{10}$D.10

分析 直接利用向量的坐标运算和向量模的公式求解即可.

解答 解:向量$\overrightarrow{a}$=(-1,-1),$\overrightarrow{b}$=(-1,1),
则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=(-3,-1),
∴|2$\overrightarrow{a}$+$\overrightarrow{b}$|=$\sqrt{(-3)^{2}+(-1)^{2}}$=$\sqrt{10}$,
故选:C.

点评 本题考查向量的坐标运算和向量的模,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

4.点P在直线2x-y+1=0上,O为坐标原点,则|OP|的最小值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{1}{5}$C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC内角A,B,C的对边分别是a,b,c.且$\frac{ac}{{b}^{2}-{a}^{2}-{c}^{2}}$=$\frac{sinAcosA}{cos(A+C)}$.
(1)求角A;
(2)当sinB-cos(C+$\frac{π}{12}$)取最大值时,求$\frac{b}{a}$的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数y=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sinxcosx+1,x∈R.
(1)求它的振幅、周期和初相;
(2)求此函数的单调增区间;
(3)若x∈[0,$\frac{π}{2}$],求函数的最大值、最小值及取得最值时x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=$\frac{2}{3}$,sinB=$\sqrt{5}$cosC,并且a=$\sqrt{2}$,则△ABC的面积为$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(3-x),(x≤0)}\\{f(x-3)+1,(x>0)}\end{array}\right.$,则f(20)=(  )
A.3B.4C.5D.log${\;}_{\frac{1}{2}}$17

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某大学在自主招生面试环节中.七位评委老师为陈小伟,李小明打出了分数,要求统计组、复核组依次打出的分数进行统计,复核组拿到了有两处污染的成绩单(成绩为40-100的整数)如表
 考生姓名评委01  评委02 评委03 评委04 评委05 评委06 评委07
 陈小伟 99 70 85 84 8■ 85 81
 李小明 79 9■ 84 84 86 8487 
(1)统计组使用茎叶图记录了两位同学的成绩,若评委05给陈小伟打出的分数为84分,评委02给李小明打出的分数为91分.请你结合两处污染的成绩单数据完成两位同学成绩的茎叶图1,并比较两位同学成绩的稳定性.
(2)若复合组将考生成绩去掉一个最高分和一个最低分,根据有两处污染的成绩单,你能否判断出两位同学平均水平的高低?
(3)该大学用系统抽样的方法抽取了n名学生的面试成绩,制作了如图2所示的频率分布直方图.
①已知图表中第四小组(即[70,80)内)的频数为15,求n的值;
②请你根据图表中的信息估计样本的众数,中位数,平均数(精确到0.01)
参考公式:假设样本数据是x1,x2,…xn,$\overline{x}$,s分别表示这组数据的平均数和标准差,则:
s=$\sqrt{\frac{({x}_{1}-\overline{x})^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}-\overline{x})^{2}}{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|0<x2<6},B={-2,0,3,4,6,8},则A∩B=(  )
A.{-2,0}B.{-2}C.{-2,3}D.{0,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.在锐角△ABC中,角A,B,C的对边分别为a,b,c,已知A,B,C依次成等差数列,且$b=\sqrt{3}$,求a+c的取值范围.

查看答案和解析>>

同步练习册答案