精英家教网 > 高中数学 > 题目详情
3.已知集合A={x|0<x2<6},B={-2,0,3,4,6,8},则A∩B=(  )
A.{-2,0}B.{-2}C.{-2,3}D.{0,3}

分析 求出集合A的范围,和B取交集即可.

解答 解:A={x|0<x2<6}={x|-$\sqrt{6}$<x<$\sqrt{6}$且x≠0},
B={-2,0,3,4,6,8},
则A∩B={-2},
故选:B.

点评 本题考查了集合的交集的定义,考查集合的运算,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

13.函数y=2cos(2x-$\frac{π}{4}}$)图象的一个对称中心是(  )
A.($\frac{π}{2},2}$)B.($\frac{π}{4}$,$\sqrt{2}}$)C.(-$\frac{π}{2}$,2)D.($\frac{3π}{8}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

14.若向量$\overrightarrow{a}$=(-1,-1),$\overrightarrow{b}$=(-1,1),则|2$\overrightarrow{a}$+$\overrightarrow{b}$|=(  )
A.$\sqrt{5}$B.2$\sqrt{5}$C.$\sqrt{10}$D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等差数列{an}的公差d∈(0,1),且$\frac{{{{sin}^2}{a_3}-{{sin}^2}{a_7}}}{{sin({a_3}+{a_7})}}$=-1,若a1∈(-$\frac{5π}{4}$,-$\frac{9π}{8}$)时,则数列{an}的前n项和为Sn取得最小值时n的值为10.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知实数x,y满足不等式组$\left\{\begin{array}{l}y≥x\\ x+y-6≤0\\ 2x-y-2≥0\end{array}$,且z=2x+y的最小值为m,最大值为n,则$\int_m^n$($\frac{1}{x}$+$\frac{ln2}{3}$)dx=(  )
A.ln3B.2ln2C.2ln3D.ln6

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.已知函数f(x)=sin(ωx+φ)(ω>0,-π<φ<0)的最小正周期是π,将函数f(x)的图象向左平移$\frac{π}{3}$个单位长度后所得的函数图象过点P(0,1),则函数f(x)=sin(ωx+φ)(  )
A.在区间[-$\frac{π}{6},\frac{π}{3}$]上单调递减B.在区间[-$\frac{π}{6},\frac{π}{3}$]上单调递增
C.在区间[-$\frac{π}{3},\frac{π}{6}$]上单调递减D.在区间[-$\frac{π}{3},\frac{π}{6}$]上单调递增

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

15.点P(3,-2,4)关于平面yOz的对称点Q的坐标为(  )
A.(-3,-2,4)B.(3,2,-4)C.(3,2,4)D.(-3,-2,-4)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

12.函数y=$\frac{x-1}{2x+3}$的值域是(-∞,$\frac{1}{2}$)∪($\frac{1}{2}$,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.如图,在直角△ABC中,AB⊥BC,D为BC边上异于B、C的一点,以AB为直径作⊙O,并分别交AC,AD于点E,F.
(Ⅰ)证明:C,E,F,D四点共圆;
(Ⅱ)若D为BC的中点,且AF=3,FD=1,求AE的长.

查看答案和解析>>

同步练习册答案