精英家教网 > 高中数学 > 题目详情
18.已知实数x,y满足不等式组$\left\{\begin{array}{l}y≥x\\ x+y-6≤0\\ 2x-y-2≥0\end{array}$,且z=2x+y的最小值为m,最大值为n,则$\int_m^n$($\frac{1}{x}$+$\frac{ln2}{3}$)dx=(  )
A.ln3B.2ln2C.2ln3D.ln6

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,求出最大值和最小值,结合积分的公式进行求解即可.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z
平移直线y=-2x+z,
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{y=x}\\{x+y-6=0}\end{array}\right.$得$\left\{\begin{array}{l}{x=3}\\{y=3}\end{array}\right.$,j即A(3,3),
此时z=2x+y得z=2×3+3=9.即n=9,
当直线y=-2x+z经过点C时,直线y=-2x+z的截距最小,
此时z最小.
由$\left\{\begin{array}{l}{y=x}\\{2x-y-2=0}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=2}\end{array}\right.$,即C(2,2),
代入目标函数z=2x+y得z=2×2+2=6.
即m=6,
则$\int_m^n$($\frac{1}{x}$+$\frac{ln2}{3}$)dx=${∫}_{6}^{9}$($\frac{1}{x}$+$\frac{ln2}{3}$)dx=(lnx+$\frac{ln2}{3}$x)|${\;}_{6}^{9}$=ln9+9×$\frac{ln2}{3}$-ln6-$\frac{ln2}{3}$×6
=ln9+3ln2-ln6-2ln2=ln9+ln8-ln6-ln4=ln$\frac{8×9}{6×4}$=ln3,
故选:A

点评 本题主要考查线性规划和积分的计算,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.已知随机变量ξ服从正态分布N(3,4),则E(2ξ+1)与D(2ξ+1)的值分别为(  )
A.13,4B.13,8C.7,8D.7,16

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.在△ABC中,内角A,B,C的对边分别为a,b,c.已知cosA=$\frac{2}{3}$,sinB=$\sqrt{5}$cosC,并且a=$\sqrt{2}$,则△ABC的面积为$\frac{\sqrt{5}}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某大学在自主招生面试环节中.七位评委老师为陈小伟,李小明打出了分数,要求统计组、复核组依次打出的分数进行统计,复核组拿到了有两处污染的成绩单(成绩为40-100的整数)如表
 考生姓名评委01  评委02 评委03 评委04 评委05 评委06 评委07
 陈小伟 99 70 85 84 8■ 85 81
 李小明 79 9■ 84 84 86 8487 
(1)统计组使用茎叶图记录了两位同学的成绩,若评委05给陈小伟打出的分数为84分,评委02给李小明打出的分数为91分.请你结合两处污染的成绩单数据完成两位同学成绩的茎叶图1,并比较两位同学成绩的稳定性.
(2)若复合组将考生成绩去掉一个最高分和一个最低分,根据有两处污染的成绩单,你能否判断出两位同学平均水平的高低?
(3)该大学用系统抽样的方法抽取了n名学生的面试成绩,制作了如图2所示的频率分布直方图.
①已知图表中第四小组(即[70,80)内)的频数为15,求n的值;
②请你根据图表中的信息估计样本的众数,中位数,平均数(精确到0.01)
参考公式:假设样本数据是x1,x2,…xn,$\overline{x}$,s分别表示这组数据的平均数和标准差,则:
s=$\sqrt{\frac{({x}_{1}-\overline{x})^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}-\overline{x})^{2}}{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.设满足以下两个条件的有穷数列a1,a2,a3,…,an为n阶“期待数列”:
①a1+a2+a3+…+an=0;②|a1|+|a2|+|a3|+…+|an|=1.
(1)若等比数列{an}为2k阶“期待数列”( k∈N*),求公比q;
(2)若一个等差数列{an}既是2k阶“期待数列”又是递增数列( k∈N*),求该数列的通项公式;
(3)记n阶“期待数列”{ai}的前k项和为Sk(k=1,2,3,…,n).
①求证:|Sk|≤$\frac{1}{2}$;
②若存在m∈{1,2,3,…,n}使Sm=$\frac{1}{2}$,试问数列{Si}能否为n阶“期待数列”?若能,求出所有这样的数列;若不能,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|0<x2<6},B={-2,0,3,4,6,8},则A∩B=(  )
A.{-2,0}B.{-2}C.{-2,3}D.{0,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.如图,已知直三棱柱ABC-A1B1C1中,∠ACB=90°,AC=BC=2,AA1=4,D是棱AA1上的任一点,M,N分别为AB,BC1的中点.
(1)求证:MN∥平面DCC1
(2)试确定点D的位置,使得DC1⊥平面DBC.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.复数z满足iz=1-2i(i为虚数单位),则z的虚部为(  )
A.-1B.1C.-2D.2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.如图所示,锐角三角形ABC的内心为I,过点A作直线BI的垂线,垂足为H,点E为圆I与边CA的切点.
(1)求证A,I,H,E四点共圆;
(2)若∠C=50°,求∠IEH的度数.

查看答案和解析>>

同步练习册答案