13£®ÉèÂú×ãÒÔÏÂÁ½¸öÌõ¼þµÄÓÐÇîÊýÁÐa1£¬a2£¬a3£¬¡­£¬anΪn½×¡°ÆÚ´ýÊýÁС±£º
¢Ùa1+a2+a3+¡­+an=0£»¢Ú|a1|+|a2|+|a3|+¡­+|an|=1£®
£¨1£©ÈôµÈ±ÈÊýÁÐ{an}Ϊ2k½×¡°ÆÚ´ýÊýÁС±£¨ k¡ÊN*£©£¬Ç󹫱Èq£»
£¨2£©ÈôÒ»¸öµÈ²îÊýÁÐ{an}¼ÈÊÇ2k½×¡°ÆÚ´ýÊýÁС±ÓÖÊǵÝÔöÊýÁУ¨ k¡ÊN*£©£¬Çó¸ÃÊýÁеÄͨÏʽ£»
£¨3£©¼Çn½×¡°ÆÚ´ýÊýÁС±{ai}µÄǰkÏîºÍΪSk£¨k=1£¬2£¬3£¬¡­£¬n£©£®
¢ÙÇóÖ¤£º|Sk|¡Ü$\frac{1}{2}$£»
¢ÚÈô´æÔÚm¡Ê{1£¬2£¬3£¬¡­£¬n}ʹSm=$\frac{1}{2}$£¬ÊÔÎÊÊýÁÐ{Si}ÄÜ·ñΪn½×¡°ÆÚ´ýÊýÁС±£¿ÈôÄÜ£¬Çó³öËùÓÐÕâÑùµÄÊýÁУ»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©¶ÔqÊÇ·ñµÈÓÚ1½øÐÐÌÖÂÛ£¬ÁîS2k=0½â³öq£»
£¨2£©ÓÉS2k=0µÃ³öϱêºÍΪ2k+1µÄÁ½ÏîºÍΪ0£¬¸ù¾ÝÊýÁеĵ¥µ÷ÐԵóöǰkÏîºÍΪ-$\frac{1}{2}$£¬ºókÏîºÍΪ$\frac{1}{2}$£¬¸ù¾ÝµÈ²îÊýÁеÄÐÔÖʽ«ºókÏîºÍ¼õȥǰkÏîºÍ¼´¿ÉµÃ³ö¹«²îdÓëkµÄ¹ØÏµ£¬ÔÙÀûÓÃÇóºÍ¹«Ê½µÃ³öÊ×Ïîa1£»
£¨3£©¢Ù¸ù¾ÝÌõ¼þ¢Ù¢Ú¼´¿ÉµÃ³öÊýÁеÄËùÓÐÕýÏîºÍΪ$\frac{1}{2}$£¬ËùÓиºÏîºÍΪ-$\frac{1}{2}$£¬¹Ê¶ø-$\frac{1}{2}$¡ÜSk$¡Ü\frac{1}{2}$£»
¢ÚÓÉ¢Ù¿ÉÖª{ai}µÄǰmÏîȫΪ·Ç¸ºÊý£¬ºóÃæµÄÏîÈ«ÊǸºÊý£¬ÓÚÊÇ{Si}µÄǰmÏîºÍΪ$\frac{1}{2}$£¬¹Ê¶øµÃ³öam=$\frac{1}{2}$£¬ÓÚÊǵóö|S1|+|S2|+¡­+|Sn|=S1+S2+¡­+Sn£®

½â´ð ½â£º£¨1£©Èôq=1£¬Óɢٵãºa1•2k=0£¬µÃa1=0£¬²»ºÏÌâÒ⣬ÉáÈ¥£»
Èôq¡Ù1£¬Óɢٵãº${a_1}+{a_2}+{a_3}+¡­+{a_{2k}}=\frac{{{a_1}£¨1-{q^{2k}}£©}}{1-q}=0$£¬½âµÃq=-1£®
£¨2£©ÉèµÈ²îÊýÁеĹ«²îÊÇd£¨d£¾0£©£¬
ÒòΪ${a_1}+{a_2}+{a_3}+¡­+{a_{2k}}=\frac{{2k£¨{a_1}+{a_{2k}}£©}}{2}=0$£¬¡àa1+a2k=ak+ak+1=0£¬
¡ßd£¾0£¬¡àak£¼0£¬ak+1£¾0£¬
Ôò${a_1}+{a_2}+{a_3}+¡­+{a_k}=-\frac{1}{2}$£¬${a_{k+1}}+{a_{k+2}}+{a_{k+3}}+¡­+{a_{2k}}=\frac{1}{2}$£®
Á½Ê½Ïà¼õµÃ£ºk2d=1£¬¡à$d=\frac{1}{k^2}$£¬
ÓÖa1+a2+a3+¡­+ak=${a_1}k+\frac{k£¨k-1£©}{2}d=-\frac{1}{2}$£¬½âµÃ${a_1}=\frac{1-2k}{{2{k^2}}}$£¬
¡à${a_n}={a_1}+£¨n-1£©d=\frac{1-2k}{{2{k^2}}}+£¨n-1£©\frac{1}{k^2}=\frac{2n-2k-1}{{2{k^2}}}$£®
£¨3£©¢Ù¼Ça1£¬a2£¬a3£¬¡­£¬anÖзǸºÏîºÍΪA£¬¸ºÏîºÍΪB£¬
ÔòA+B=0£¬A-B=1£¬¡à$A=\frac{1}{2}£¬B=-\frac{1}{2}$£¬
¡à-$\frac{1}{2}$¡ÜSk¡Ü$\frac{1}{2}$£¬¡à$|{S_k}|¡Ü\frac{1}{2}$£®
¢ÚÈô´æÔÚm¡Ê{1£¬2£¬3£¬¡­£¬n}£¬Ê¹${S_m}=\frac{1}{2}$£¬
Ôòa1¡Ý0£¬a2¡Ý0£¬¡­£¬am¡Ý0£¬am+1¡Ü0£¬am+2¡Ü0£¬¡­£¬an¡Ü0£¬
ÇÒ${a_{m+1}}+{a_{m+2}}+{a_{m+3}}+¡­+{a_{2n}}=-\frac{1}{2}$£¬
ÈôÊýÁÐ{Si}£¨i=1£¬2£¬3£¬¡­£¬n£©ÊÇn½×¡°ÆÚ´ýÊýÁС±£¬
¼Ç{Si}£¨i=1£¬2£¬3£¬¡­£¬n£©µÄǰkÏîºÍΪTk£¬ÓÉ¢ÙµÃ$|{T_k}|¡Ü\frac{1}{2}$£¬
¡à${T_m}={S_1}+{S_2}+¡­+{S_m}¡Ü\frac{1}{2}$£¬
¡ß${S_m}=\frac{1}{2}$£¬¡àS1+S2+¡­+Sm-1=0£¬
¡ßa1¡Ý0£¬a2¡Ý0£¬¡­£¬am¡Ý0£¬
¡àS1=S2=¡­=Sm-1=0£¬¡àa1=a2=¡­=am-1=0£¬${a_m}=\frac{1}{2}$£¬
ÓÖam+1¡Ü0£¬am+2¡Ü0£¬¡­£¬an¡Ü0£¬${a_{m+1}}+{a_{m+2}}+¡­+{a_{2n}}=-\frac{1}{2}$£¬
¡àSm+1¡Ý0£¬Sm+2¡Ý0£¬¡­£¬Sn¡Ý0£¬
¡à|S1|+|S2|+¡­+|Sn|=S1+S2+¡­+Sn£®
¡àS1+S2+¡­+Sn=0Óë|S1|+|S2|+¡­+|Sn|=1²»ÄÜͬʱ³ÉÁ¢£¬
¼´ÊýÁÐ{Si}£¨i=1£¬2£¬3£¬¡­£¬n£©²»ÄÜΪn½×¡°ÆÚ´ýÊýÁС±£®

µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁУ¬µÈ±ÈÊýÁеÄÐÔÖÊ£¬ÊýÁÐǰnÏîºÍµÄ¶¨Ò壬¶Ôж¨ÒåµÄÀí½â£¬ÊôÓÚÄÑÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

3£®ÒÑÖªº¯Êýf£¨x£©=x2+4xsin¦Á+$\frac{2}{7}$tan¦Á£¨0£¼¦Á£¼$\frac{¦Ð}{4}$£©ÓÐÇÒ½öÓÐÒ»¸öÁãµã£®
£¨¢ñ£©Çósin2¦ÁµÄÖµ£»
£¨¢ò£©Èôcos2¦Â+2sin2¦Â=$\frac{3}{14}$+sin¦Â£¬¦Â¡Ê£¨$\frac{¦Ð}{2}$£¬¦Ð£©£¬Çó¦Â-2¦ÁµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

4£®ÉèÊýÁÐ{an}£¬a1=1£¬an+1=$\frac{a_n}{2}$+$\frac{1}{2^n}$£¬ÊýÁÐ{bn}£¬bn=2n-1an£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{bn}ΪµÈ²îÊýÁУ¬²¢Çó³ö{bn}µÄͨÏʽ£»
£¨2£©ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇóSn£»
£¨3£©ÕýÊýÊýÁÐ{dn}Âú×ã$d_n^$=$\sqrt{1+\frac{1}{b_n^2}+\frac{1}{{b_{n+1}^2}}}$£®ÉèÊýÁÐ{dn}µÄǰnÏîºÍΪDn£¬Çó²»³¬¹ýD100µÄ×î´óÕûÊýµÄÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

1£®2017ÄêijµØÇø¸ß¿¼¸Ä¸ï·½°¸³ǫ̈£¬Ñ¡¿¼¿ÆÄ¿ÓУºË¼ÏëÕþÖΣ¬ÀúÊ·£¬µØÀí£¬ÎïÀí£¬»¯Ñ§£¬ÉúÃü¿ÆÑ§£®ÒªÇó¿¼Éú´ÓÖÐ×ÔÑ¡ÈýÃŲμӸ߿¼£¬¼×£¬ÒÒÁ½Ãûͬѧ¸÷×ÔÑ¡¿¼3Ãſγ̣¨Ã¿Ãſγ̱»Ñ¡ÖеĻú»áÏàµÈ£©£¬Á½Î»Í¬Ñ§Ô¼¶¨¹²Í¬Ñ¡Ôñ˼ÏëÕþÖΣ¬²»Ñ¡ÎïÀí£¬ÈôÁ½ÈËÑ¡ÔñµÄ¿Î³ÌÇé¿ö¹²ÓÐ36ÖÖ£¬ÔòËûÃÇÑ¡¿¼µÄ3Ãſγ̶¼ÏàͬµÄ¸ÅÂÊÊÇ$\frac{1}{6}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

8£®ÒÑÖªa£¬b£¬c¡ÊR£¬ÇÒa2+b2+c2=1
£¨1£©ÇóÖ¤£º|a+b+c|¡Ü$\sqrt{3}$
£¨2£©Èô²»µÈʽ|2x+1|+|x-1|¡Ý£¨a+b+c£©2¶ÔÒ»ÇÐʵÊýa£¬b£¬c¶¼³ÉÁ¢£¬ÇóxµÄȡֵ·¶Î§£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑ֪ʵÊýx£¬yÂú×ã²»µÈʽ×é$\left\{\begin{array}{l}y¡Ýx\\ x+y-6¡Ü0\\ 2x-y-2¡Ý0\end{array}$£¬ÇÒz=2x+yµÄ×îСֵΪm£¬×î´óֵΪn£¬Ôò$\int_m^n$£¨$\frac{1}{x}$+$\frac{ln2}{3}$£©dx=£¨¡¡¡¡£©
A£®ln3B£®2ln2C£®2ln3D£®ln6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=$\left\{\begin{array}{l}{£¨\frac{1}{2}£©^x}£¬x¡Ü1\\{log_{\frac{1}{4}}}x£¬x£¾1\end{array}$£¬Èôf£¨f£¨a£©£©=-1£¬Ôòa=£¨¡¡¡¡£©
A£®4B£®-1C£®-2D£®2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

2£®ÒÑÖªA£¨2£¬0£©£¬B£¨0£¬2£©£¬Ö±Ïß1£ºkx-y-k-1=0ÓëÏß¶ÎABÓй«¹²µã£¬ÔòlµÄбÂÊkµÄ·¶Î§ÊÇ£¨¡¡¡¡£©
A£®£¨-¡Þ£¬-3]¡È[1£¬+¡Þ£©B£®[-3£¬1]C£®[1£¬+¡Þ£©D£®£¨-¡Þ£¬-3]

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

9£®Èçͼ£¬¾ÝÆøÏó²¿ÃÅÔ¤±¨£¬ÔÚ¾àÀëijÂëÍ·ÄÏÆ«¶«45¡ã·½Ïò600km´¦µÄÈÈ´ø·ç±©ÖÐÐÄÕýÒÔ20km/hµÄËÙ¶ÈÏòÕý±±·½ ÏòÒÆ¶¯£¬¾à·ç±©ÖÐÐÄ450kmÒÔÄڵĵØÇø¶¼½«Êܵ½Ó°Ï죬Ôò¸ÃÂëÍ·½«Êܵ½ÈÈ´ø·ç±©Ó°ÏìµÄʱ¼äΪ£¨¡¡¡¡£©
A£®14hB£®15hC£®16h?D£®17h

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸