·ÖÎö £¨1£©¶ÔqÊÇ·ñµÈÓÚ1½øÐÐÌÖÂÛ£¬ÁîS2k=0½â³öq£»
£¨2£©ÓÉS2k=0µÃ³öϱêºÍΪ2k+1µÄÁ½ÏîºÍΪ0£¬¸ù¾ÝÊýÁеĵ¥µ÷ÐԵóöǰkÏîºÍΪ-$\frac{1}{2}$£¬ºókÏîºÍΪ$\frac{1}{2}$£¬¸ù¾ÝµÈ²îÊýÁеÄÐÔÖʽ«ºókÏîºÍ¼õȥǰkÏîºÍ¼´¿ÉµÃ³ö¹«²îdÓëkµÄ¹ØÏµ£¬ÔÙÀûÓÃÇóºÍ¹«Ê½µÃ³öÊ×Ïîa1£»
£¨3£©¢Ù¸ù¾ÝÌõ¼þ¢Ù¢Ú¼´¿ÉµÃ³öÊýÁеÄËùÓÐÕýÏîºÍΪ$\frac{1}{2}$£¬ËùÓиºÏîºÍΪ-$\frac{1}{2}$£¬¹Ê¶ø-$\frac{1}{2}$¡ÜSk$¡Ü\frac{1}{2}$£»
¢ÚÓÉ¢Ù¿ÉÖª{ai}µÄǰmÏîȫΪ·Ç¸ºÊý£¬ºóÃæµÄÏîÈ«ÊǸºÊý£¬ÓÚÊÇ{Si}µÄǰmÏîºÍΪ$\frac{1}{2}$£¬¹Ê¶øµÃ³öam=$\frac{1}{2}$£¬ÓÚÊǵóö|S1|+|S2|+¡+|Sn|=S1+S2+¡+Sn£®
½â´ð ½â£º£¨1£©Èôq=1£¬Óɢٵãºa1•2k=0£¬µÃa1=0£¬²»ºÏÌâÒ⣬ÉáÈ¥£»
Èôq¡Ù1£¬Óɢٵãº${a_1}+{a_2}+{a_3}+¡+{a_{2k}}=\frac{{{a_1}£¨1-{q^{2k}}£©}}{1-q}=0$£¬½âµÃq=-1£®
£¨2£©ÉèµÈ²îÊýÁеĹ«²îÊÇd£¨d£¾0£©£¬
ÒòΪ${a_1}+{a_2}+{a_3}+¡+{a_{2k}}=\frac{{2k£¨{a_1}+{a_{2k}}£©}}{2}=0$£¬¡àa1+a2k=ak+ak+1=0£¬
¡ßd£¾0£¬¡àak£¼0£¬ak+1£¾0£¬
Ôò${a_1}+{a_2}+{a_3}+¡+{a_k}=-\frac{1}{2}$£¬${a_{k+1}}+{a_{k+2}}+{a_{k+3}}+¡+{a_{2k}}=\frac{1}{2}$£®
Á½Ê½Ïà¼õµÃ£ºk2d=1£¬¡à$d=\frac{1}{k^2}$£¬
ÓÖa1+a2+a3+¡+ak=${a_1}k+\frac{k£¨k-1£©}{2}d=-\frac{1}{2}$£¬½âµÃ${a_1}=\frac{1-2k}{{2{k^2}}}$£¬
¡à${a_n}={a_1}+£¨n-1£©d=\frac{1-2k}{{2{k^2}}}+£¨n-1£©\frac{1}{k^2}=\frac{2n-2k-1}{{2{k^2}}}$£®
£¨3£©¢Ù¼Ça1£¬a2£¬a3£¬¡£¬anÖзǸºÏîºÍΪA£¬¸ºÏîºÍΪB£¬
ÔòA+B=0£¬A-B=1£¬¡à$A=\frac{1}{2}£¬B=-\frac{1}{2}$£¬
¡à-$\frac{1}{2}$¡ÜSk¡Ü$\frac{1}{2}$£¬¡à$|{S_k}|¡Ü\frac{1}{2}$£®
¢ÚÈô´æÔÚm¡Ê{1£¬2£¬3£¬¡£¬n}£¬Ê¹${S_m}=\frac{1}{2}$£¬
Ôòa1¡Ý0£¬a2¡Ý0£¬¡£¬am¡Ý0£¬am+1¡Ü0£¬am+2¡Ü0£¬¡£¬an¡Ü0£¬
ÇÒ${a_{m+1}}+{a_{m+2}}+{a_{m+3}}+¡+{a_{2n}}=-\frac{1}{2}$£¬
ÈôÊýÁÐ{Si}£¨i=1£¬2£¬3£¬¡£¬n£©ÊÇn½×¡°ÆÚ´ýÊýÁС±£¬
¼Ç{Si}£¨i=1£¬2£¬3£¬¡£¬n£©µÄǰkÏîºÍΪTk£¬ÓÉ¢ÙµÃ$|{T_k}|¡Ü\frac{1}{2}$£¬
¡à${T_m}={S_1}+{S_2}+¡+{S_m}¡Ü\frac{1}{2}$£¬
¡ß${S_m}=\frac{1}{2}$£¬¡àS1+S2+¡+Sm-1=0£¬
¡ßa1¡Ý0£¬a2¡Ý0£¬¡£¬am¡Ý0£¬
¡àS1=S2=¡=Sm-1=0£¬¡àa1=a2=¡=am-1=0£¬${a_m}=\frac{1}{2}$£¬
ÓÖam+1¡Ü0£¬am+2¡Ü0£¬¡£¬an¡Ü0£¬${a_{m+1}}+{a_{m+2}}+¡+{a_{2n}}=-\frac{1}{2}$£¬
¡àSm+1¡Ý0£¬Sm+2¡Ý0£¬¡£¬Sn¡Ý0£¬
¡à|S1|+|S2|+¡+|Sn|=S1+S2+¡+Sn£®
¡àS1+S2+¡+Sn=0Óë|S1|+|S2|+¡+|Sn|=1²»ÄÜͬʱ³ÉÁ¢£¬
¼´ÊýÁÐ{Si}£¨i=1£¬2£¬3£¬¡£¬n£©²»ÄÜΪn½×¡°ÆÚ´ýÊýÁС±£®
µãÆÀ ±¾Ì⿼²éÁ˵ȲîÊýÁУ¬µÈ±ÈÊýÁеÄÐÔÖÊ£¬ÊýÁÐǰnÏîºÍµÄ¶¨Ò壬¶Ôж¨ÒåµÄÀí½â£¬ÊôÓÚÄÑÌ⣮
| Äê¼¶ | ¸ßÖÐ¿Î³Ì | Äê¼¶ | ³õÖÐ¿Î³Ì |
| ¸ßÒ» | ¸ßÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÒ» | ³õÒ»Ãâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ß¶þ | ¸ß¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õ¶þ | ³õ¶þÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
| ¸ßÈý | ¸ßÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ | ³õÈý | ³õÈýÃâ·Ñ¿Î³ÌÍÆ¼ö£¡ |
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | ln3 | B£® | 2ln2 | C£® | 2ln3 | D£® | ln6 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 4 | B£® | -1 | C£® | -2 | D£® | 2 |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | £¨-¡Þ£¬-3]¡È[1£¬+¡Þ£© | B£® | [-3£¬1] | C£® | [1£¬+¡Þ£© | D£® | £¨-¡Þ£¬-3] |
²é¿´´ð°¸ºÍ½âÎö>>
¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ
| A£® | 14h | B£® | 15h | C£® | 16h? | D£® | 17h |
²é¿´´ð°¸ºÍ½âÎö>>
¹ú¼ÊѧУÓÅÑ¡ - Á·Ï°²áÁбí - ÊÔÌâÁбí
ºþ±±Ê¡»¥ÁªÍøÎ¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨Æ½Ì¨ | ÍøÉÏÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | µçÐÅթƾٱ¨×¨Çø | ÉæÀúÊ·ÐéÎÞÖ÷ÒåÓк¦ÐÅÏ¢¾Ù±¨×¨Çø | ÉæÆóÇÖȨ¾Ù±¨×¨Çø
Î¥·¨ºÍ²»Á¼ÐÅÏ¢¾Ù±¨µç»°£º027-86699610 ¾Ù±¨ÓÊÏ䣺58377363@163.com