4£®ÉèÊýÁÐ{an}£¬a1=1£¬an+1=$\frac{a_n}{2}$+$\frac{1}{2^n}$£¬ÊýÁÐ{bn}£¬bn=2n-1an£®
£¨1£©ÇóÖ¤£ºÊýÁÐ{bn}ΪµÈ²îÊýÁУ¬²¢Çó³ö{bn}µÄͨÏʽ£»
£¨2£©ÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬ÇóSn£»
£¨3£©ÕýÊýÊýÁÐ{dn}Âú×ã$d_n^$=$\sqrt{1+\frac{1}{b_n^2}+\frac{1}{{b_{n+1}^2}}}$£®ÉèÊýÁÐ{dn}µÄǰnÏîºÍΪDn£¬Çó²»³¬¹ýD100µÄ×î´óÕûÊýµÄÖµ£®

·ÖÎö £¨1£©ÓɵȲîÊýÁе͍ÒåºÍÊýÁеĵÝÍÆ¹«Ê½¼´¿ÉÖ¤Ã÷£¬
£¨2£©¸ù¾Ý´íλÏà¼õ·¨¼´¿ÉÇó³öÊýÁÐ{an}µÄǰnÏîºÍΪSn£¬
£¨3£©ÀûÓÃÁÑÏîÇóºÍ£¬¼´¿ÉÇó³ö²»³¬¹ýD100µÄ×î´óÕûÊýµÄÖµ£®

½â´ð ½â£º£¨1£©ÓÉ${a_{n+1}}=\frac{a_n}{2}+\frac{1}{2^n}$£¬µÃ${2^n}{a_{n+1}}={2^{n-1}}{a_n}+1$£®                  
ÓÖ${b_n}={2^{n-1}}{a_n}$£¬
ËùÒÔbn+1=bn+1£¬
ÓÖb1=a1=1£¬
ËùÒÔÊýÁÐ{bn}ÊÇÒÔ1ΪÊ×Ï1Ϊ¹«²îµÄµÈ²îÊýÁУ®bn=n£®         
£¨2£©¡ß${a_n}=\frac{n}{{{2^{n-1}}}}$
ËùÒÔ${S_n}=\frac{1}{2^0}+\frac{2}{2^1}+\frac{3}{2^2}+¡­+\frac{n}{{{2^{n-1}}}}$¢Ù£¬
$\frac{1}{2}{S_n}=\frac{1}{2^1}+\frac{2}{2^2}+\frac{3}{2^3}+¡­+\frac{n}{2^n}$£¬¢Ú
ÓÉ¢Ù-¢Ú£¬
µÃ$\frac{1}{2}{S_n}=1+\frac{1}{2^1}+\frac{1}{2^2}+¡­+\frac{1}{{{2^{n-1}}}}-\frac{n}{2^n}=\frac{{1[1-{{£¨\frac{1}{2}£©}^n}]}}{{1-\frac{1}{2}}}-\frac{n}{2^n}=2-{£¨\frac{1}{2}£©^{n-1}}-\frac{n}{2^n}=2-\frac{2+n}{2^n}$
ËùÒÔ${S_n}=4-\frac{2+n}{{{2^{n-1}}}}$£®           
£¨3£©${d_n}^2=1+\frac{1}{n^2}+\frac{1}{{{{£¨n+1£©}^2}}}=\frac{{{n^2}{{£¨n+1£©}^2}+{{£¨n+1£©}^2}+{n^2}}}{{{n^2}{{£¨n+1£©}^2}}}$
${d_n}=\frac{n£¨n+1£©+1}{n£¨n+1£©}=1+\frac{1}{n£¨n+1£©}=1+\frac{1}{n}-\frac{1}{n+1}$£¬
ËùÒÔ${D_{100}}=£¨1+\frac{1}{1}-\frac{1}{2}£©+£¨1+\frac{1}{2}-\frac{1}{3}£©+£¨1+\frac{1}{3}-\frac{1}{4}£©+¡­+£¨1+\frac{1}{100}-\frac{1}{101}£©=101-\frac{1}{101}$£¬
ËùÒÔ£¬²»³¬¹ýD100µÄ×î´óÕûÊýΪ100£®

µãÆÀ ±¾Ì⿼²éÊýÁÐͨÏʽÇó½â£¬´íλÏàÏû·¨ÇóºÍ£¬ÁÑÏî·¨ÇóºÍ£¬×ª»¯¼ÆËãÄÜÁ¦£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

14£®ÒÑÖªÍÖÔ²E£º$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1£¨a£¾b£¾0£©µÄÀëÐÄÂÊΪ$\frac{\sqrt{2}}{2}$£¬A£¬B·Ö±ðÊÇÍÖÔ²µÄÉ϶¥µã¡¢ÓÒ¶¥µã£¬Ô­µãOµ½Ö±ÏßABµÄ¾àÀëΪ$\frac{\sqrt{6}}{3}$£®
£¨1£©ÇóEµÄ·½³Ì£»
£¨2£©Ö±Ïßl1£¬l2µÄбÂʾùΪ$\frac{\sqrt{2}}{2}$£¬Ö±Ïßl1ÓëEÏàÇÐÓÚµãM£¨µãMÔÚµÚ¶þÏóÏÞÄÚ£©£¬Ö±Ïßl2ÓëEÏཻÓÚP£¬QÁ½µã£¬MP¡ÍMQ£¬ÇóÖ±Ïßl2µÄ·½³Ì£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

15£®ÇúÏßy=x4ÔÚ£¨1£¬1£©´¦µÄÇÐÏß·½³ÌΪ£¨¡¡¡¡£©
A£®4x-y-3=0B£®x+4y-5=0C£®4x-y+3=0D£®x+4y+3=0

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

12£®»¯¼òʽ×Ócos72¡ãcos12¡ã+sin72¡ãsin12¡ãµÄÖµÊÇ£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®$\frac{{\sqrt{3}}}{2}$C£®$\frac{{\sqrt{3}}}{3}$D£®$\sqrt{3}$

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

19£®ÒÑÖª±äÁ¿x£¬yÂú×㣺$\left\{{\begin{array}{l}{x+y¡Ý2}\\{x-y¡Ý-1}\\{x¡Ü2}\end{array}}\right.$£¬Ôòz=2x+yµÄ×î´óֵΪ£¨¡¡¡¡£©
A£®4B£®7C£®8D£®10

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

9£®ÔÚ¡÷ABCÖУ¬ÄÚ½ÇA£¬B£¬CµÄ¶Ô±ß·Ö±ðΪa£¬b£¬c£®ÒÑÖªcosA=$\frac{2}{3}$£¬sinB=$\sqrt{5}$cosC£¬²¢ÇÒa=$\sqrt{2}$£¬Ôò¡÷ABCµÄÃæ»ýΪ$\frac{\sqrt{5}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

16£®Èô$\frac{sin£¨2¦Á-\frac{¦Ð}{3}£©+cos£¨2¦Á-\frac{¦Ð}{6}£©}{sin2¦Á+co{s}^{2}¦Á}$=$\frac{2}{5}$£¬Ôòtan¦Á=£¨¡¡¡¡£©
A£®$\frac{1}{2}$B£®2C£®$\frac{1}{3}$D£®4

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

13£®ÉèÂú×ãÒÔÏÂÁ½¸öÌõ¼þµÄÓÐÇîÊýÁÐa1£¬a2£¬a3£¬¡­£¬anΪn½×¡°ÆÚ´ýÊýÁС±£º
¢Ùa1+a2+a3+¡­+an=0£»¢Ú|a1|+|a2|+|a3|+¡­+|an|=1£®
£¨1£©ÈôµÈ±ÈÊýÁÐ{an}Ϊ2k½×¡°ÆÚ´ýÊýÁС±£¨ k¡ÊN*£©£¬Ç󹫱Èq£»
£¨2£©ÈôÒ»¸öµÈ²îÊýÁÐ{an}¼ÈÊÇ2k½×¡°ÆÚ´ýÊýÁС±ÓÖÊǵÝÔöÊýÁУ¨ k¡ÊN*£©£¬Çó¸ÃÊýÁеÄͨÏʽ£»
£¨3£©¼Çn½×¡°ÆÚ´ýÊýÁС±{ai}µÄǰkÏîºÍΪSk£¨k=1£¬2£¬3£¬¡­£¬n£©£®
¢ÙÇóÖ¤£º|Sk|¡Ü$\frac{1}{2}$£»
¢ÚÈô´æÔÚm¡Ê{1£¬2£¬3£¬¡­£¬n}ʹSm=$\frac{1}{2}$£¬ÊÔÎÊÊýÁÐ{Si}ÄÜ·ñΪn½×¡°ÆÚ´ýÊýÁС±£¿ÈôÄÜ£¬Çó³öËùÓÐÕâÑùµÄÊýÁУ»Èô²»ÄÜ£¬Çë˵Ã÷ÀíÓÉ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Éè0£¼x£¼y£¼a£¼1£¬Ôòloga£¨xy£©µÄȡֵ·¶Î§Îª£¨2£¬+¡Þ£©£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸