精英家教网 > 高中数学 > 题目详情
19.已知变量x,y满足:$\left\{{\begin{array}{l}{x+y≥2}\\{x-y≥-1}\\{x≤2}\end{array}}\right.$,则z=2x+y的最大值为(  )
A.4B.7C.8D.10

分析 作出不等式组对应的平面区域,利用目标函数的几何意义,结合数形结合进行求解即可.

解答 解:作出不等式组对应的平面区域如图:(阴影部分).
由z=2x+y得y=-2x+z,
平移直线y=-2x+z
由图象可知当直线y=-2x+z经过点A时,直线y=-2x+z的截距最大,
此时z最大.
由$\left\{\begin{array}{l}{x=2}\\{x-y=-1}\end{array}\right.$,解得$\left\{\begin{array}{l}{x=2}\\{y=3}\end{array}\right.$,即C(2,3),
代入目标函数z=2x+y得z=2×2+3=4+3=/.
即目标函数z=2x+y的最大值为7
故选:B

点评 本题主要考查线性规划的应用,利用目标函数的几何意义,结合数形结合的数学思想是解决此类问题的基本方法.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

9.已知正方形的四个顶点分别为O(0,0),A(1,0),B(1,1),C(0,1),将x轴、直线x=1和曲线C:y=x2所围成的封闭区域记为Ω.若在正方形OABC内任取一点P,则点P落在Ω内的概率等于$\frac{1}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.-300°化成弧度制为(  )
A.$\frac{10π}{3}$B.$-\frac{5π}{6}$C.$-\frac{5π}{3}$D.$\frac{7π}{3}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知△ABC的三边a,b,c满足:a3+b3=c3,则此三角形是(  )
A.钝角三角形B.锐角三角形C.直角三角形D.等腰直角三角形

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.求下列各式的值:
(1)cos40°sin20°+cos20°sin40°
(2)cos$\frac{π}{8}$•sin$\frac{π}{8}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.设数列{an},a1=1,an+1=$\frac{a_n}{2}$+$\frac{1}{2^n}$,数列{bn},bn=2n-1an
(1)求证:数列{bn}为等差数列,并求出{bn}的通项公式;
(2)数列{an}的前n项和为Sn,求Sn
(3)正数数列{dn}满足$d_n^$=$\sqrt{1+\frac{1}{b_n^2}+\frac{1}{{b_{n+1}^2}}}$.设数列{dn}的前n项和为Dn,求不超过D100的最大整数的值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.点P在正方形ABCD内,满足AP=2BP,CP=3BP,求∠APB的度数.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a,b,c∈R,且a2+b2+c2=1
(1)求证:|a+b+c|≤$\sqrt{3}$
(2)若不等式|2x+1|+|x-1|≥(a+b+c)2对一切实数a,b,c都成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.把抛物线y=3(x-2011)(x+2012)-2向上移动两个单位后,所得的抛物线与x轴的两个交点之间的距离是4023.

查看答案和解析>>

同步练习册答案