精英家教网 > 高中数学 > 题目详情
9.把抛物线y=3(x-2011)(x+2012)-2向上移动两个单位后,所得的抛物线与x轴的两个交点之间的距离是4023.

分析 求出新的抛物线的解析式,令其等于0,解出交点的坐标,作差即可.

解答 解:把抛物线y=3(x-2011)(x+2012)-2向上移动两个单位后,
得:y=3(x-2011)(x+2012),
令y=0,解得:x1=2011,x2=-2012,
所得的抛物线与x轴的两个交点之间的距离是:2011-(-2012)=4023,
故答案为:4023.

点评 本题考查了二次函数的性质,考查图象平移以及两点间的距离,是一道基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.已知变量x,y满足:$\left\{{\begin{array}{l}{x+y≥2}\\{x-y≥-1}\\{x≤2}\end{array}}\right.$,则z=2x+y的最大值为(  )
A.4B.7C.8D.10

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知以抛物线x2=2py(p>0)的焦点为虚轴的一个端点的双曲线的标准方程为$\frac{x^2}{8}$-$\frac{y^2}{b^2}$=1(b>0),抛物线的一条与双曲线的渐近线平行的切线在y轴上的截距为-1,则p的值为4.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.两条平行直线3x-4y-3=0和mx-8y+5=0之间的距离是(  )
A.$\frac{11}{10}$B.$\frac{8}{5}$C.$\frac{15}{7}$D.$\frac{4}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知an=$\left\{\begin{array}{l}{5n+1,n为奇数}\\{{2}^{\frac{n}{2}},n为偶数}\end{array}\right.$.
(1)求数列{an}的前10项和S10
(2)求数列{an}的前2k项和S2k

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.设0<x<y<a<1,则loga(xy)的取值范围为(2,+∞).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知点F是抛物线C:y2=x的焦点,点S是抛物线C上在第一象限内的一点,且|SF|=$\frac{5}{4}$.以S为圆心的动圆与x轴分别交于两点A、B,延长SA,SB分别交抛物线C于M,N两点.
(1)当|AB|=2时,求圆S的方程;
(2)证明直线MN的斜率为定值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.在平面直角坐标系中,横坐标、纵坐标均为整数的点成为整点,如果函数f(x)的图象恰好通过n(n∈N*)个整点,则称函数f(x)为n阶整点函数,有下列函数:
①y=x3;②$y={(\frac{1}{3})^x}$;③$y=\frac{2-x}{x-1}$;④y=|lnx|,其中是二阶整点的函数的序号是③.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.如图,A,B是⊙O上的两点,P为⊙O外一点,连结PA,PB分别交⊙O于点C,D,且AB=AD,连结BC并延长至E,使∠PEB=∠PAB.
(Ⅰ) 求证:PE=PD;
(Ⅱ) 若AB=EP=1,且∠BAD=120°,求AP.

查看答案和解析>>

同步练习册答案