精英家教网 > 高中数学 > 题目详情
4.在平面直角坐标系中,横坐标、纵坐标均为整数的点成为整点,如果函数f(x)的图象恰好通过n(n∈N*)个整点,则称函数f(x)为n阶整点函数,有下列函数:
①y=x3;②$y={(\frac{1}{3})^x}$;③$y=\frac{2-x}{x-1}$;④y=|lnx|,其中是二阶整点的函数的序号是③.

分析 由已知条件利用n阶整点函数的定义和函数性质直接求解.

解答 解:①y=x3中,当x∈Z时,y值一定取整数,∴函数y=x3的图象恰好通过无数个整点,故①不是二阶整点的函数;
在②$y={(\frac{1}{3})^x}$中,x=0时,y=1,x∈Z-时,y值一定取整数,
∴函数$y={(\frac{1}{3})^x}$的图象能够通过无数个整点,故②不是二阶整点的函数;
在③$y=\frac{2-x}{x-1}$=-1+$\frac{1}{x-1}$中,x=0时,y=-2;x=2时,y=0.∴③是二阶整点的函数,故③成立;
在④y=|lnx|中,当x=en,n∈Z时,y值一定取整数,
∴函数y=|lnx|的图象能够通过无数个整点,故④不是二阶整点的函数.
故答案为:③.

点评 本题考查二阶整点的函数的判断,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

8.已知a,b,c∈R,且a2+b2+c2=1
(1)求证:|a+b+c|≤$\sqrt{3}$
(2)若不等式|2x+1|+|x-1|≥(a+b+c)2对一切实数a,b,c都成立,求x的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

9.把抛物线y=3(x-2011)(x+2012)-2向上移动两个单位后,所得的抛物线与x轴的两个交点之间的距离是4023.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.命题p:函数$y=\sqrt{a{x^2}+ax+1}$的定义域为R;
命题q:$y={log_{\frac{1}{2}}}(a{x^2}+4x+2)$的值域是R.若p∧q为真命题求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

19.以下四个关于圆锥曲线的命题中:
①设A,B为两个定点,k为非零常数,|PA|-|PB|=k,则动点P的轨迹为双曲线;
②设圆C:(x-1)2+y2=1,过原点O作圆的任意弦OA,则弦OA中点P的轨迹为椭圆;
③方程2x2-5x+2=0的两根可分别作为椭圆和双曲线的离心率;
④双曲线$\frac{x^2}{25}-\frac{y^2}{9}$=1与椭圆$\frac{x^2}{35}+{y^2}$=1有相同的焦点.
其中真命题的序号为③④.(写出所有真命题的序号)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.如图,据气象部门预报,在距离某码头南偏东45°方向600km处的热带风暴中心正以20km/h的速度向正北方 向移动,距风暴中心450km以内的地区都将受到影响,则该码头将受到热带风暴影响的时间为(  )
A.14hB.15hC.16h?D.17h

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.下列函数,既是奇函数,又在区间(0,+∞)上是减函数的是(  )
A.f(x)=-x2B.f(x)=$\frac{1}{{x}^{2}}$C.f(x)=$\frac{1}{{x}^{3}}$D.f(x)=x3

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.已知函数y=f(x)对于任意x∈R有$f(x+1)=-\frac{1}{f(x)}$,且当x∈[-1,1]时,f(x)=x2+1,则以下命题正确的是:
①函数数y=f(x)是周期为2的偶函数;
②函数y=f(x)在[2,3]上单调递增;
③函数$y=f(x)+\frac{4}{f(x)}$的最大值是4;
④若关于x的方程[f(x)]2-f(x)-m=0有实根,则实数m的范围是[0,2];
⑤当x1,x2∈[1,3]时,$f(\frac{{{x_1}+{x_2}}}{2})≥\frac{{f({x_1})+f({x_2})}}{2}$.
其中真命题的序号是①②④.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.某高中学校在2015年的一次体能测试中,规定所有男生必须依次参加50米跑、立定跳远和一分钟引体向上三项测试,只有三项测试全部达标才算合格,已知男生甲的50米跑和立定跳远的测试与男生乙的50米跑测试已达标,男生甲需要参加一分钟引体向上测试,男生乙还需要参加立定跳远和一分钟引体向上两项测试,若甲参加一分钟引体向上测试达标的概率为p,乙参加立定跳远和一分钟引体向上测试达标的概率均为$\frac{1}{2}$,甲、乙每一项测试是否达标互不影响,已知甲和乙同时合格的概率为$\frac{1}{6}$.
(1)求p的值,并计算甲和乙恰有一人合格的概率;
(2)在三项测试项目中,设甲达标的测试项目数为x,乙达标的测试项目的项数为y,记ξ=x+y,求随机变量ξ的分布列和数学期望.

查看答案和解析>>

同步练习册答案