分析 (1)二次函数根的零点及三角函数求值;(2)用二倍角公式、同角三角函数关系和两角差的余弦公式.
解答 解:(1)由题知,$△=(4sinα)^{2}-\frac{8}{7}tanα=0$
即$16si{n}^{2}α-\frac{8sinα}{7cosα}=0$∵$0<α<\frac{π}{4}∴sinα≠0$
∴14sinαcosα=1∴$sin2α=\frac{1}{7}$;
(2)由题知$cos2β+1-cos2β=\frac{3}{14}+sinβ$,即$sinβ=\frac{11}{14}$,∵$β∈(\frac{π}{2},π)$
∴$cosβ=-\frac{5\sqrt{3}}{14}$,
∵$α∈(0,\frac{π}{4})∴2α∈(0,\frac{π}{2})$∴$cos2α=\frac{4\sqrt{3}}{7}$
∵β-2α∈(0,π)
∴cos(β-2α)=cosβcos2α+sinβsin2α=$\frac{4\sqrt{3}}{7}•\frac{-5\sqrt{3}}{14}+\frac{1}{7}•\frac{11}{14}=-\frac{1}{2}$
∴$β-2α=\frac{2π}{3}$
点评 本题考查了三角公式的灵活运用,判断角的范围、正确选择三角函数名称是本题的关键.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-4] | B. | (-∞,-4)∪(4,+∞) | C. | [4,+∞) | D. | (-∞,-4]∪[4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 4 | B. | 2$\sqrt{2}$ | C. | 2 | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{1}{2}$ | B. | $\frac{{\sqrt{3}}}{2}$ | C. | $\frac{{\sqrt{3}}}{3}$ | D. | $\sqrt{3}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com