精英家教网 > 高中数学 > 题目详情
11.已知等差数列{an}的公差d∈(0,1),且$\frac{{{{sin}^2}{a_3}-{{sin}^2}{a_7}}}{{sin({a_3}+{a_7})}}$=-1,若a1∈(-$\frac{5π}{4}$,-$\frac{9π}{8}$)时,则数列{an}的前n项和为Sn取得最小值时n的值为10.

分析 利用三角函数的降幂公式化简$\frac{{{{sin}^2}{a_3}-{{sin}^2}{a_7}}}{{sin({a_3}+{a_7})}}$=-1,得出$\frac{cos{2a}_{7}-cos{2a}_{3}}{2}$=-sin(a3+a7),再利用和差化积公式得出sin(a7-a3)=1,求出公差d的值,写出通项公式an,令an≤0,即可求得n的值.

解答 解:∵{an}为等差数列,且$\frac{{{{sin}^2}{a_3}-{{sin}^2}{a_7}}}{{sin({a_3}+{a_7})}}$=-1,
∴$\frac{\frac{1-cos{2a}_{3}}{2}-\frac{1-cos{2a}_{7}}{2}}{sin{(a}_{3}{+a}_{7})}$=-1,
∴$\frac{cos{2a}_{7}-cos{2a}_{3}}{2}$=-sin(a3+a7),
由和差化积公式得:$\frac{1}{2}$×(-2)sin(a7+a3)•sin(a7-a3)=-sin(a3+a7),
又sin(a3+a7)≠0,
∴sin(a7-a3)=1,
∴4d=2kπ+$\frac{π}{2}$∈(0,4);
取k=0,得4d=$\frac{π}{2}$,解得d=$\frac{π}{8}$;
又∵a1∈(-$\frac{5π}{4}$,-$\frac{9π}{8}$),∴an=a1+$\frac{π}{8}$(n-1),
∴an∈(-$\frac{11π}{8}$+$\frac{nπ}{8}$,-$\frac{10π}{8}$+$\frac{nπ}{8}$);
令an≤0,得-$\frac{10π}{8}$+$\frac{nπ}{8}$≤0,
解得n≤10;
∴n=10时,数列{an}的前n项和Sn取得最小值.
故答案为:10.

点评 本题考查了数列与三角函数的综合应用问题,利用三角函数的降幂公式与和差化积公式求得sin(a7-a3)=1是关键,也是难点,是综合性题目.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

1.若sinθ=$\frac{3}{5}$,θ为第二象限角,则sin2θ≡-$\frac{24}{25}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.已知函数y=$\frac{1}{2}$cos2x+$\frac{\sqrt{3}}{2}$sinxcosx+1,x∈R.
(1)求它的振幅、周期和初相;
(2)求此函数的单调增区间;
(3)若x∈[0,$\frac{π}{2}$],求函数的最大值、最小值及取得最值时x的取值集合.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.设函数f(x)=$\left\{\begin{array}{l}{lo{g}_{\frac{1}{2}}(3-x),(x≤0)}\\{f(x-3)+1,(x>0)}\end{array}\right.$,则f(20)=(  )
A.3B.4C.5D.log${\;}_{\frac{1}{2}}$17

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.某大学在自主招生面试环节中.七位评委老师为陈小伟,李小明打出了分数,要求统计组、复核组依次打出的分数进行统计,复核组拿到了有两处污染的成绩单(成绩为40-100的整数)如表
 考生姓名评委01  评委02 评委03 评委04 评委05 评委06 评委07
 陈小伟 99 70 85 84 8■ 85 81
 李小明 79 9■ 84 84 86 8487 
(1)统计组使用茎叶图记录了两位同学的成绩,若评委05给陈小伟打出的分数为84分,评委02给李小明打出的分数为91分.请你结合两处污染的成绩单数据完成两位同学成绩的茎叶图1,并比较两位同学成绩的稳定性.
(2)若复合组将考生成绩去掉一个最高分和一个最低分,根据有两处污染的成绩单,你能否判断出两位同学平均水平的高低?
(3)该大学用系统抽样的方法抽取了n名学生的面试成绩,制作了如图2所示的频率分布直方图.
①已知图表中第四小组(即[70,80)内)的频数为15,求n的值;
②请你根据图表中的信息估计样本的众数,中位数,平均数(精确到0.01)
参考公式:假设样本数据是x1,x2,…xn,$\overline{x}$,s分别表示这组数据的平均数和标准差,则:
s=$\sqrt{\frac{({x}_{1}-\overline{x})^{2}+({x}_{2}-\overline{x})^{2}+…+({x}_{n}-\overline{x})^{2}}{n}}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

16.已知i是虚数单位,z=$\frac{2-i}{2+i}-{i^{2016}}$,且z的共轭复数为$\overline z$,则$\overline z$在复平面内对应的点在(  )
A.第一象限B.第二象限C.第三象限D.第四象限

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.已知集合A={x|0<x2<6},B={-2,0,3,4,6,8},则A∩B=(  )
A.{-2,0}B.{-2}C.{-2,3}D.{0,3}

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若a为正实数,函数f(x)=-x2+2ax+1,其中x∈[0,2],求函数f(x)的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.设变量x,y满足约束条件$\left\{\begin{array}{l}{x+y≤3}\\{x-y≥-1}\\{y≥1}\end{array}\right.$,则z=x-2y的最小值为-3.

查看答案和解析>>

同步练习册答案