精英家教网 > 高中数学 > 题目详情
1.若sinθ=$\frac{3}{5}$,θ为第二象限角,则sin2θ≡-$\frac{24}{25}$.

分析 利用同角三角函数的基本关系求得cosθ的值,再利用二倍角公式求得sin2θ的值.

解答 解:∵sinθ=$\frac{3}{5}$,θ为第二象限角,∴cosθ=-$\sqrt{{1-sin}^{2}θ}$=-$\frac{4}{5}$,
则sin2θ=2sinθcosθ=-$\frac{24}{25}$,
故答案为:-$\frac{24}{25}$.

点评 本题主要考查同角三角函数的基本关系,二倍角公式的应用,以及三角函数在各个象限中的符号,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

11.已知△ABC中,角A、B、C所对的边分别为a、b、c
(Ⅰ)证明:若A、B、C成等差数列,则B=$\frac{π}{3}$;
(Ⅱ)证明:若a、b、c的倒数成等差数列,则B<$\frac{π}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,a1=2,Sn=an+1-2.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足2${\;}^{\frac{1}{{b}_{n}}}$=a1a2…an,且k•(b1+b2+…+bn)≤an(n∈N*),求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知函数f(x)=asinx-bcosx(a,b为常数,x∈R)在x=$\frac{π}{3}$处取得最小值,则函数y=f($\frac{2π}{3}$-x)的图象关于(  )中心对称.
A.($\frac{5π}{6}$,0)B.($\frac{2π}{3}$,0)C.($\frac{π}{2}$,0)D.($\frac{π}{3}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某空间几何体的三视图(单位:cm)如图所示,则其体积是6cm3,表面积是20+2$\sqrt{2}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$\sqrt{3}$sinx-cosx的振幅和频率分别为(  )
A.$\sqrt{3}$,$\frac{1}{π}$B.2,$\frac{1}{2π}$C.$\sqrt{3}$,πD.2,2π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.函数y=2cos(2x-$\frac{π}{4}}$)图象的一个对称中心是(  )
A.($\frac{π}{2},2}$)B.($\frac{π}{4}$,$\sqrt{2}}$)C.(-$\frac{π}{2}$,2)D.($\frac{3π}{8}$,0)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,sinB=$\frac{12}{13}$,cosA=$\frac{3}{5}$,则sinC为(  )
A.$\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{63}{65}$D.$\frac{16}{65}$或$\frac{56}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

11.已知等差数列{an}的公差d∈(0,1),且$\frac{{{{sin}^2}{a_3}-{{sin}^2}{a_7}}}{{sin({a_3}+{a_7})}}$=-1,若a1∈(-$\frac{5π}{4}$,-$\frac{9π}{8}$)时,则数列{an}的前n项和为Sn取得最小值时n的值为10.

查看答案和解析>>

同步练习册答案