| A. | $\frac{16}{65}$ | B. | $\frac{56}{65}$ | C. | $\frac{63}{65}$ | D. | $\frac{16}{65}$或$\frac{56}{65}$ |
分析 先判断A,B的范围,利用同角的三角函数的关系和两角和的正弦即可求得答案
解答 解:∵在△ABC中,由cos$\frac{π}{4}$=$\frac{\sqrt{2}}{2}$>cosA=$\frac{3}{5}$>$\frac{1}{2}$=cos$\frac{π}{3}$,A∈(0,π),
∴$\frac{π}{4}$<A<$\frac{π}{3}$,
∴sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{4}{5}$,
∴$\frac{\sqrt{3}}{2}$<sinB=$\frac{12}{13}$<1
∴$\frac{π}{3}$<B<$\frac{π}{2}$,或$\frac{π}{2}$<B<$\frac{2π}{3}$,
∴cosB=$\sqrt{1-si{n}^{2}B}$=±$\frac{5}{13}$,sinA=$\sqrt{1-co{s}^{2}A}$=$\frac{4}{5}$,
∴sinC=sin(A+B)=sinAcosB+cosAsinB=$\frac{5}{13}×\frac{4}{5}$+$\frac{3}{5}×\frac{12}{13}$=$\frac{56}{65}$,
或sinC=sin(A+B)=sinAcosB+cosAsinB=-$\frac{5}{13}×\frac{4}{5}$+$\frac{3}{5}×\frac{12}{13}$=$\frac{16}{65}$,
故选:D.
点评 本题考查两角和与差的正弦函数,关键在于由已知条件判断A、B、C的范围,考查同角三角函数间的基本关系,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 3 | B. | 4 | C. | 5 | D. | log${\;}_{\frac{1}{2}}$17 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com