精英家教网 > 高中数学 > 题目详情
15.已知tan$\frac{θ}{2}$=3,则sinθ=$\frac{3}{5}$.

分析 本题应用了三角函数构造齐次式即“1“的代换.

解答 解:sinθ=$2sin\frac{θ}{2}cos\frac{θ}{2}$=$\frac{2sin\frac{θ}{2}cos\frac{θ}{2}}{si{n}^{2}\frac{θ}{2}+co{s}^{2}\frac{θ}{2}}$=$\frac{2tan\frac{θ}{2}}{ta{n}^{2}\frac{θ}{2}+1}$=$\frac{3}{5}$,
故答案为$\frac{3}{5}$.

点评 本题易考题型,考查了“1”的代换.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知x,y满足$\left\{\begin{array}{l}{x≥0}\\{x+y-5≤0}\\{2x-y-1≤0}\end{array}\right.$,则z=mx+y(0<m<1)的最大值是(  )
A.-1B.5C.7D.2m+3

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.函数y=$\sqrt{3}$sinx-cosx的振幅和频率分别为(  )
A.$\sqrt{3}$,$\frac{1}{π}$B.2,$\frac{1}{2π}$C.$\sqrt{3}$,πD.2,2π

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.如图,椭圆$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{{b}^{2}}$=1(a>b>0)的左焦点为F,过点F的直线交椭圆于A,B两点,|AF|的最大值为M,|BF|的最小值为m,满足M•m=$\frac{3}{4}$a2
(Ⅰ)若线段AB垂直于x轴时,|AB|=$\frac{3}{2}$,求椭圆的方程;
(Ⅱ)若椭圆的焦距为2,设线段AB的中点为G,AB的垂直平分线与x轴和y轴分别交于D,E两点,O是坐标原点,记△GFD的面积为S1,△OED的面积为S2,求$\frac{2{S}_{1}{S}_{2}}{{{S}_{1}}^{2}+{{S}_{2}}^{2}}$的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.在△ABC中,sinB=$\frac{12}{13}$,cosA=$\frac{3}{5}$,则sinC为(  )
A.$\frac{16}{65}$B.$\frac{56}{65}$C.$\frac{63}{65}$D.$\frac{16}{65}$或$\frac{56}{65}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

20.若函数f(x)=2sin(2x+$\frac{π}{6}$)-2cos2x,x∈[$\frac{π}{2}$,π].
(1)若sinx=$\frac{4}{5}$,求函数f(x)的值;
(2)求函数f(x)的周期、最小值、对称轴、单调增区间;
(3)求函数f(x)的值域.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知关于x的不等式|ax-1|+a|x-1|≥1(a>0).
(1)当a=1时,求此不等式的解集;
(2)若此不等式的解集是R,求正实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.如图,圆O是四边形ABQC的外接圆,其直径为4,PA垂直圆O所在的平面,PA=4,则四棱锥P-ABQC外接球的表面积为32π.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.判断下列函数的奇偶性:
(1)f(x)=x2-2x;
(2)f(x)=x3+$\frac{1}{x}$;
(3)f(x)=$\sqrt{1-{x}^{2}}$+$\sqrt{{x}^{2}-1}$;
(4)f(x)=2-|x|;
(5)f(x)=$\left\{\begin{array}{l}{{x}^{2}-2x+3(x>0)}\\{0(x=0)}\\{-{x}^{2}-2x-3(x<0)}\end{array}\right.$.

查看答案和解析>>

同步练习册答案