分析 (1)余弦定理应用;(2)利用三角形内角和、正弦定理化简,求函数最值.
解答 解:(1)由余玄定理得:$cosB=\frac{{a}^{2}+{c}^{2}-{b}^{2}}{2ac}$,即$\frac{1}{-2cosB}=\frac{sinAcosA}{-cosB}$
化简得:sin2A=1
∵0<A<π
∴$2A=\frac{π}{2}∴A=\frac{π}{4}$
(2)由(1)知B+C=$\frac{3}{4}π$,得$C=\frac{3}{4}π-B$
$sinB-cos(C+\frac{π}{12})=sinB-cos(\frac{5π}{6}-B)$=$\frac{1}{2}sinB+\frac{\sqrt{3}}{2}cosB=sin(B+\frac{π}{3})$
∵$0<B<\frac{3π}{4}$
∴$当B+\frac{π}{3}=\frac{π}{2}即B=\frac{π}{6}时,取得最大值$
由正弦定理得,$\frac{b}{a}=\frac{sinB}{sinA}=\frac{\sqrt{2}}{2}$.
点评 本题考查了正余弦定理的应用及三角函数最值的求法.
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{π}{2},2}$) | B. | ($\frac{π}{4}$,$\sqrt{2}}$) | C. | (-$\frac{π}{2}$,2) | D. | ($\frac{3π}{8}$,0) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\frac{16}{65}$ | B. | $\frac{56}{65}$ | C. | $\frac{63}{65}$ | D. | $\frac{16}{65}$或$\frac{56}{65}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | $\sqrt{5}$ | B. | 2$\sqrt{5}$ | C. | $\sqrt{10}$ | D. | 10 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-3,-2,4) | B. | (3,2,-4) | C. | (3,2,4) | D. | (-3,-2,-4) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com