精英家教网 > 高中数学 > 题目详情
15.已知f(x)=x2+3x-5,x∈[t,t+1].
(1)求f(x)的最小值h(t);
(2)求f(x)的最大值g(t)

分析 利用对称轴与区间的位置关系,分类讨论,即可得出结论.

解答 解:(1)f(x)=(x+$\frac{3}{2}$)2-$\frac{29}{4}$,对称轴为x=-$\frac{3}{2}$.
①t+1≤-$\frac{3}{2}$,即t≤-$\frac{5}{2}$时,h(t)=f(t+1)=t2+5t-1
②t<-$\frac{3}{2}$<t+1,即-$\frac{5}{2}$<t<-$\frac{3}{2}$时,得:h(t)=-$\frac{29}{4}$;
③t≥-$\frac{3}{2}$时,得:h(t)=f(t)=t2+3t-5
∴h(t)=$\left\{\begin{array}{l}{{t}^{2}+5t-1,t≤-\frac{5}{2}}\\{-\frac{29}{4},-\frac{5}{2}<t<-\frac{3}{2}}\\{{t}^{2}+3t-5,t≥-\frac{3}{2}}\end{array}\right.$;
(2)t≤-2时,g(t)=f(t)=t2+3t-5;
t>-2时,g(t)=f(t+1)=t2+5t-1
∴g(t)=$\left\{\begin{array}{l}{{t}^{2}+3t-5,t≤-2}\\{{t}^{2}+5t-1,t>-2}\end{array}\right.$.

点评 本题考查函数的最值,考查分类讨论的数学思想,正确运用对称轴与区间的位置关系分类讨论是关键.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.为了抽查某城市汽车年检情况,在该城市主干道上采取抽车牌个位数为6的汽车检查,这种抽样方法是(  )
A.简单随机抽样B.抽签法C.系统抽样D.分层抽样

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

6.对于任意的实数m∈[0,1],mx2-2x-m≥2,则x的取值范围是(-∞,-1].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

3.数列{an}的前n项和记为Sn,a1=1,点(Sn,an+1)在直线y=3x+1上,n∈N*
(Ⅰ)求数列{an}的通项公式;
(Ⅱ)设bn=log4an+1,cn=an+bn,Tn是数列{cn}的前n项和,求Tn

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax的图象经过点(-2,9),求f(1)、f(-$\frac{3}{2}$)和f(6.21)的值(精确到0.001).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知x1,x2∈R,则(x1-e${\;}^{{x}_{2}}$)2+(x2-e${\;}^{{x}_{1}}$)2的最小值为2.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.已知函数f(x)=sin(ωx+φ)(0<ω<4,|φ|<$\frac{π}{2}$),若f($\frac{π}{6}$)-f($\frac{2π}{3}$)=2,则函数f(x)的单调递增区间为(  )
A.[$\frac{kπ}{2}$+$\frac{π}{6}$,$\frac{kπ}{2}$+$\frac{5π}{12}$],k∈ZB.[$\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{π}{6}$],k∈Z
C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈ZD.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.点P在直线2x-y+1=0上,O为坐标原点,则|OP|的最小值是(  )
A.$\frac{{\sqrt{3}}}{3}$B.$\frac{1}{5}$C.$\sqrt{5}$D.$\frac{{\sqrt{5}}}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知△ABC内角A,B,C的对边分别是a,b,c.且$\frac{ac}{{b}^{2}-{a}^{2}-{c}^{2}}$=$\frac{sinAcosA}{cos(A+C)}$.
(1)求角A;
(2)当sinB-cos(C+$\frac{π}{12}$)取最大值时,求$\frac{b}{a}$的值.

查看答案和解析>>

同步练习册答案