精英家教网 > 高中数学 > 题目详情
7.已知函数f(x)=sin(ωx+φ)(0<ω<4,|φ|<$\frac{π}{2}$),若f($\frac{π}{6}$)-f($\frac{2π}{3}$)=2,则函数f(x)的单调递增区间为(  )
A.[$\frac{kπ}{2}$+$\frac{π}{6}$,$\frac{kπ}{2}$+$\frac{5π}{12}$],k∈ZB.[$\frac{kπ}{2}$-$\frac{π}{12}$,$\frac{kπ}{2}$+$\frac{π}{6}$],k∈Z
C.[kπ+$\frac{π}{6}$,kπ+$\frac{2π}{3}$],k∈ZD.[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z

分析 根据正弦函数的值域可得ω•$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$,ω•$\frac{2π}{3}$+φ=2kπ+$\frac{3π}{2}$,k∈Z,两式相减可得ω 和 φ的值,可得f(x)的解析式,再利用正弦函数的最值以及单调性,求得函数f(x)的单调递增区间.

解答 解:已知函数f(x)=sin(ωx+φ)(0<ω<4,|φ|<$\frac{π}{2}$),若f($\frac{π}{6}$)-f($\frac{2π}{3}$)=2,
则 f($\frac{π}{6}$)=1,f($\frac{2π}{3}$)=-1,即 sin(ω•$\frac{π}{6}$+φ)=1,sin(ω•$\frac{2π}{3}$+φ)=-1,
∴ω•$\frac{π}{6}$+φ=2kπ+$\frac{π}{2}$,ω•$\frac{2π}{3}$+φ=2kπ+$\frac{3π}{2}$,k∈Z,两式相减可得ω=2,
∴φ=$\frac{π}{6}$,函数f(x)=sin(2x+$\frac{π}{6}$),
令2kπ-$\frac{π}{2}$≤2x+$\frac{π}{6}$≤2kπ+$\frac{π}{2}$,求得kπ-$\frac{π}{3}$≤x≤kπ+$\frac{π}{6}$,
可得函数f(x)的单调递增区间为[kπ-$\frac{π}{3}$,kπ+$\frac{π}{6}$],k∈Z.

点评 本题主要考查正弦函数的值域,正弦函数的最值以及单调性,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.一物体在力F(x)=$\left\{\begin{array}{l}{2,(0≤x≤2)}\\{2x-2,(x>2)}\end{array}\right.$(单位:N)的作用下沿与力F相同的方向,从x=0处运动到x=4(单位:m)处,则力F(x)作的功为(  )
A.10 JB.12 JC.14 JD.16 J

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知α,β为锐角,$\frac{sinβ}{sinα}$=cos(α+β).
(1)求tan(α+β)cotα的值;
(2)求tanβ的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.已知f(x)=x2+3x-5,x∈[t,t+1].
(1)求f(x)的最小值h(t);
(2)求f(x)的最大值g(t)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.已知角α的终边经过点P(1,2),则cos2α等于(  )
A.-$\frac{3}{5}$B.$\frac{1}{5}$C.$\frac{\sqrt{5}}{5}$D.$\frac{3}{5}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知数列{an}的前n项和为Sn,a1=2,Sn=an+1-2.
(1)求数列{an}的通项公式;
(2)若数列{bn}满足2${\;}^{\frac{1}{{b}_{n}}}$=a1a2…an,且k•(b1+b2+…+bn)≤an(n∈N*),求实数k的最大值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=|2x-5a|+|2x+1|,g(x)=|x-1|+3.
(1)解为等式|g(x)|<8;
(2)若对任意x1∈R,都存在x2∈R,使得f(x1)=g(x2)成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

16.某空间几何体的三视图(单位:cm)如图所示,则其体积是6cm3,表面积是20+2$\sqrt{2}$cm2

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.在5升水中有一个病毒,现从中随机地取出1升水,含有病毒的概率是多大?

查看答案和解析>>

同步练习册答案