分析 (I)根据递推公式可得{an}为等比数列,从而得出通项公式;
(II)求出bn,利用分项求和得出Tn.
解答 解:(I)由题意得an+1=3Sn+1,∴an=3Sn-1+1(n≥2),
两式相减得an+1-an=3an(n≥2),即an+1=4an,
又a2=3a1+1=4=4a1,
∴{an}是以1为首项,4为公比的等比数列.
∴${a_n}={4^{n-1}}$.
(II)${b_n}={log_4}{4^n}=n$,∴${c_n}={4^{n-1}}+n$,
∴${T_n}=1•\frac{{1-{4^n}}}{1-4}+\frac{(n+1)n}{2}=\frac{1}{3}•{4^n}+\frac{1}{2}{n^2}+\frac{1}{2}n-\frac{1}{3}$.
点评 本题考查了等比关系的确定,等差数列,等比数列的求和公式,属于中档题.
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | ($\frac{π}{2},2}$) | B. | ($\frac{π}{4}$,$\sqrt{2}}$) | C. | (-$\frac{π}{2}$,2) | D. | ($\frac{3π}{8}$,0) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com