精英家教网 > 高中数学 > 题目详情
曲线y=lnx在点(e,1)处的切线方程为
 
考点:利用导数研究曲线上某点切线方程
专题:计算题,导数的概念及应用
分析:由y=lnx,知y′=
1
x
,故曲线y=lnx在点M(e,1)处切线的斜率k=
1
e
,由此能求出曲线y=lnx在点M(e,1)处切线的方程.
解答: 解:∵y=lnx,∴y′=
1
x

∴曲线y=lnx在点M(e,1)处切线的斜率k=
1
e

曲线y=lnx在点M(e,1)处切线的方程为:y-1=
1
e
(x-e),
整理,得y=
1
e
x

故答案为:y=
1
e
x
点评:本题考查曲线的切线方程的求法,是基础题.解题时要认真审题,注意导数的几何意义的合理运用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

在实数集R中定义一种运算“*”,?a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a∈R,a*0=a;    
(2)对任意a,b∈R,a*b=ab+(a*0)+(b*0)
关于函数f(x)=(ex)*
1
ex
的性质,有如下说法:
①函数f(x)的最小值为3;
②函数f(x)为偶函数;
③函数f(x)的单调递增区间为(-∞,0]
其中正确说法的序号为(  )
A、①B、①②C、①②③D、②③

查看答案和解析>>

科目:高中数学 来源: 题型:

O为△ABC所在平面内的一点,若
OA
+
OB
+
OC
=
0
,则O必是△ABC的
 
.(填写“内心”、“重心”、“垂心”、“外心”之一)

查看答案和解析>>

科目:高中数学 来源: 题型:

已知双曲线C1
x2
a2
-8y2=1(a>0)的离心率是
2
,抛物线C2:y2=2px的准线过C1的左焦点.
(1)求抛物线C2的方程;
(2)若A(x1,y1),B(x2,y2),C(x3,4)是C2上三点,且CA⊥CB,证明:直线AB过定点,并求出这个定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

若可行域为式子中的x、y满足约束条件
y≤x
x+y≤1
y≥-1.

(1)求可行域的面积S;
(2)求z=
y+1
x+1
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=sin(ωx+φ)(ω>0,|φ|<
π
2
)的部分图象如图,令an=f(
6
),则a1+a2+a3+…+a2014=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

奇函数f(x)=
m-g(x)
1+g(x)
的定义域为R,其中y=g(x)为指数函数且过点(2,4).
(Ⅰ)求函数y=f(x)的解析式;
(Ⅱ)若对任意的t∈[0,5],不等式f(t2+2t+k)+f(-2t2+2t-5)>0解集非空,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=(
1
2
2x+2×(
1
2
x (x≤-1)的值域是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
21-x,x<1
x
,x≥1
,则使得f(x)≤2成立的x的取值范围是
 

查看答案和解析>>

同步练习册答案