精英家教网 > 高中数学 > 题目详情
O为△ABC所在平面内的一点,若
OA
+
OB
+
OC
=
0
,则O必是△ABC的
 
.(填写“内心”、“重心”、“垂心”、“外心”之一)
考点:三角形五心
专题:计算题,平面向量及应用
分析:取BC中点D,连接并延长OD至E,使DE=OD 于是四边形BOCE是平行四边形,由条件和共线向量定理,即可得到AD为中线,同理延长BO交AC于F,则F也为中点,即可得到O是重心.
解答: 解:取BC中点D,连接并延长OD至E,使DE=OD 于是四边形BOCE是平行四边形,
OB
+
OC
=
OE
,又
OA
+
OB
+
OC
=
0
,∴
AO
=
OE
=2
OD

∴A,O,D,E四点共线,即AD是中线,
同理延长BO交AC于F,则F也为中点,
∴O是重心.
故答案为:重心
点评:本题考查平面向量的运用,考查向量加法的平行四边形法则,同时考查三角形的重心定义,属于中档题.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

已知tanα=m(m≠0),求α其他的三角函数.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-x,x<1
(x-1)2,x≥1
,若f(a)=1,则实数a的值为(  )
A、-1或0B、2或-1
C、0或2D、2

查看答案和解析>>

科目:高中数学 来源: 题型:

设x,y满足x+4y=40且x,y∈R+,则lgx+lgy的最大值是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=2lnx+
1
x

(1)求f(x)的单调区间和极值;
(2)若?x∈[1,+∞)及t∈[1,2]不等式f(x)≥t2-2mt+2恒成立,求实数m取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

如图多面体中,正方形ADEF所在的平面与直角梯形ABCD所在的平面垂直,且AD=AB=
1
2
CD,AB∥CD,M为CE的中点.
(1)证明:BM∥平面ADEF;
(2)证明:平面BCE⊥平面BDE.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知正项数列{an}中,a1=1,a2=
1
2
2
a
2
n
=
1
a
2
n+1
+
1
a
2
n-1
(n≥2),则a6=
 

查看答案和解析>>

科目:高中数学 来源: 题型:

曲线y=lnx在点(e,1)处的切线方程为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知圆锥的母线长为2,母线与旋转轴所成的角为30°,则该圆锥的表面积等于
 

查看答案和解析>>

同步练习册答案