精英家教网 > 高中数学 > 题目详情
已知tanα=m(m≠0),求α其他的三角函数.
考点:同角三角函数间的基本关系
专题:三角函数的求值
分析:由tanα=m(m≠0),先切化弦,再利用平方关系,求出cosα,即可求出sinα.
解答: 解:∵tanα=m(m≠0),
sinα
cosα
=m,
∴sinα=mcosα,
两边平方得sin2α=m2cos2α,
即1-cos2α=m2cos2α,
整理得(1+m2)cos2α=1;
∴cos2α=
1
1+m2

两边开方得cosα=±
1
1+m2
1+m2
1+m2

∴sinα=mcosα=±
m
1+m2
1+m2
点评:本题考查了同角的三角函数的运算关系,解题时应熟练地掌握同角三角函数的基本关系公式,是基础题
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

函数f(x)=
lgx
1-x
的定义域为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

在△ABC中,角A、B、C的对边分别为a、b、c.
(1)若sin(A+
π
6
)=
1
3
,求sin(2A-
π
6
)的值;
(2)若△ABC的外接圆半径为1,
a
cosA
=
4cosB
b

①求C的值;
②求
ab-2
a+b-2
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

函数y=cos
π
2
x•cos
π
2
(x-1)的最小正周期是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

利用三角函数的定义求
6
的三个三角函数值.

查看答案和解析>>

科目:高中数学 来源: 题型:

证明:
1
2x2
-
1
2x1
=
2x1-2x2
2x1+x2

查看答案和解析>>

科目:高中数学 来源: 题型:

比较sin31°、cos58°、tan32°三者的大小.

查看答案和解析>>

科目:高中数学 来源: 题型:

在实数集R中定义一种运算“*”,?a,b∈R,a*b为唯一确定的实数,且具有性质:
(1)对任意a∈R,a*0=a;    
(2)对任意a,b∈R,a*b=ab+(a*0)+(b*0)
关于函数f(x)=(ex)*
1
ex
的性质,有如下说法:
①函数f(x)的最小值为3;
②函数f(x)为偶函数;
③函数f(x)的单调递增区间为(-∞,0]
其中正确说法的序号为(  )
A、①B、①②C、①②③D、②③

查看答案和解析>>

科目:高中数学 来源: 题型:

O为△ABC所在平面内的一点,若
OA
+
OB
+
OC
=
0
,则O必是△ABC的
 
.(填写“内心”、“重心”、“垂心”、“外心”之一)

查看答案和解析>>

同步练习册答案