精英家教网 > 高中数学 > 题目详情
2.椭圆$\left\{\begin{array}{l}x=4cosθ\\ y=5sinθ\end{array}$(θ为参数)的长轴长为(  )
A.4B.5C.8D.10

分析 求出椭圆的标准方程,然后求解椭圆的长轴长.

解答 解:椭圆$\left\{\begin{array}{l}x=4cosθ\\ y=5sinθ\end{array}$(θ为参数)可得$\frac{{y}^{2}}{25}+\frac{{x}^{2}}{16}=1$,可得长半轴a=5,
椭圆的长轴长为10.
故选:D.

点评 本题考查椭圆的简单性质的应用,考查计算能力.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

5.已知直线y=x+b与两曲线C1:x2+y2-|x|-|y|=0和C2:x2+y2-|x|-|y|=$\frac{1}{2}$仅有两个交点,则实数b的取值范围是(  )
A.(-2,2)B.(-1-$\sqrt{2}$,1+$\sqrt{2}$)C.(-1-$\sqrt{2}$,-$\sqrt{2}$)∪(-$\sqrt{2}$,1+$\sqrt{2}$)D.(-1-$\sqrt{2}$,-2)∪(2,1+$\sqrt{2}$)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.如图,四棱锥P-ABCD的底面是边长为4的正方形ABCD,侧棱PA垂直于底面,且PA=3.
(1)求异面直线PB与CD所成的角的大小;(结果用反三角函数表示)
(2)求四棱锥P-ABCD的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=axlnx(a≠0,a∈R)
(1)求f(x)的单调区间;
(2)当x∈(1,e)时,不等式$\frac{x-1}{a}$<lnx恒成立,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.如图,长方体ABCD-A1B1C1D1中,底面ABCD是正方形,AA1=2AB=2,E是DD1上的一点,且满足B1D⊥平面ACE.
(Ⅰ)求证:A1D⊥AE;
(Ⅱ)求三棱锥A-CDE的体积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

7.已知函数f(x)=ln(ex)-kx.
(1)求f(x)的单调区间;
(2)若?x∈(0,+∞),都有f(x)≤0,求实数k的取值范围;
(3)证明:$\frac{ln2}{3}+\frac{ln3}{4}+…+\frac{lnn}{n+1}<\frac{n(n-1)}{4}$(n∈N*,且n≥2).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

14.已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1(a>b>0)$的离心率为$e=\frac{{\sqrt{2}}}{2}$,并且椭圆经过点$(-1,\frac{{\sqrt{2}}}{2})$,F为椭圆的左焦点.
(1)求椭圆的方程
(2)设过点F的直线交椭圆于A,B两点,并且线段AB的中点在直线x+y=0上,求直线AB的直线方程.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

11.已知点P(x0,3)与点Q(x0,4)分别在椭圆$\frac{{x}^{2}}{16}$+$\frac{{y}^{2}}{12}$=1与抛物线y2=2px(p>0)上.
(1)求抛物线的方程;
(2)设点A(x1,y1),B(x2,y2)(y1≤0,y2≤0)是抛物线上的两点,∠AQB的角平分线与x轴垂直,求直线AB在y轴上的截距的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.如图,在底面为梯形的四棱锥S-ABCD中,已知AD∥BC,∠ASC=60°,AD=DC=$\sqrt{2}$,SA=SC=SD=2.
(Ⅰ)求证:AC⊥SD;
(Ⅱ)求三棱锥B-SAD的体积.

查看答案和解析>>

同步练习册答案