精英家教网 > 高中数学 > 题目详情

(4分)如图,花坛水池中央有一喷泉,水管OP=1m,水从喷头P喷出后呈抛物线状先向上至最高点后落下,若最高点距水面2m,P距抛物线对称轴1m,则在水池直径的下列可选值中,最合算的是( )

A.2.5m B.4m C.5m D.6m

 

5

【解析】

试题分析:建立直角坐标系,借助坐标法先求出落点的最远距离,从而估算出水池直径即可.

【解析】
以O为原点,OP所在直线为y轴建立直角坐标系(如图),则抛物线方程可设为

y=a(x﹣1)2+2,P点坐标为(0,1),

∴1=a+2.∴a=﹣1.

∴y=﹣(x﹣1)2+2.

令y=0,得(x﹣1)2=2,∴x=1±

∴水池半径OM=+1≈2.414(m).

因此水池直径约为2×|OM|=4.828(m).

练习册系列答案
相关习题

科目:高中数学 来源:[同步]2014年湘教版选修1-1 3.4 生活中的优化问题举例练习卷(解析版) 题型:填空题

如图,在边长为60cm的正方形铁皮的四角切去相等的正方形,再把它的边沿虚线折起,做成一个无盖的方底箱子,最大容积是 .

 

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年湘教版选修1-1 3.1 导数的概念练习卷(解析版) 题型:解答题

试求过点P(3,5)且与曲线y=x2相切的直线方程.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年湘教版选修1-1 2.4 圆锥曲线的应用练习卷(解析版) 题型:解答题

(2003•上海)如图,某隧道设计为双向四车道,车道总宽22米,要求通行车辆限高4.5米,隧道全长2.5千米,隧道的拱线近似地看成半个椭圆形状.

(1)若最大拱高h为6米,则隧道设计的拱宽l是多少?

(2)若最大拱高h不小于6米,则应如何设计拱高h和拱宽l,才能使半个椭圆形隧道的土方工程量最最小?(半个椭圆的面积公式为,柱体体积为:底面积乘以高.本题结果精确到0.1米)

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年湘教版选修1-1 2.4 圆锥曲线的应用练习卷(解析版) 题型:解答题

设有一颗彗星沿一椭圆轨道绕地球运行,地球恰好位于椭圆轨道的焦点处,当此彗星离地球相距m万千米和m万千米时,经过地球和彗星的直线与椭圆的长轴夹角分别为,求该彗星与地球的最近距离.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年湘教版选修1-1 2.3 抛物线练习卷(解析版) 题型:解答题

设F(1,0),点M在x轴上,点P在y轴上,且=2=0;

(1)当点P在y轴上运动时,求点N的轨迹C的方程;

(2)设A(x1,y1),B(x2,y2),D(x3,y3)是曲线C上除去原点外的不同三点,且成等差数列,当线段AD的垂直平分线与x轴交于点E(3,0)时,求点B的坐标.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年湘教版选修1-1 2.3 抛物线练习卷(解析版) 题型:选择题

(2009•四川)已知直线l1:4x﹣3y+6=0和直线l2:x=﹣1,抛物线y2=4x上一动点P到直线l1和直线l2的距离之和的最小值是( )

A.2 B.3 C. D.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年湘教版选修1-1 2.1 椭圆练习卷(解析版) 题型:解答题

已知椭圆E的中心在坐标原点O,两个焦点分别为A(﹣1,0),B(1,0),一个顶点为H(2,0).

(1)求椭圆E的标准方程;

(2)对于x轴上的点P(t,0),椭圆E上存在点M,使得MP⊥MH,求实数t的取值范围.

 

查看答案和解析>>

科目:高中数学 来源:[同步]2014年湘教版必修二 3.1 弧度制与任意角练习卷1(解析版) 题型:填空题

(5分)(2007•江苏)某时钟的秒针端点A到中心点O的距离为5cm,秒针均匀地绕点O旋转,当时间t=0时,点A与钟面上标12的点B重合,将A,B两点的距离d(cm)表示成t(s)的函数,则d=   ,其中t∈[0,60].

 

查看答案和解析>>

同步练习册答案