精英家教网 > 高中数学 > 题目详情
设函数.
(Ⅰ)求f (x)的单调区间;
(Ⅱ)若当时,不等式f (x)<m恒成立,求实数m的取值范围;
(Ⅲ)若关于x的方程在区间[0, 2]上恰好有两个相异的实根,求实数a的取值范围.
(Ⅰ)f (x)的递增区间是,递减区间是(-1, 0)
(Ⅱ)当时,不等式f (x)<m恒成立.(Ⅲ)a的取值范围是
(Ⅰ)函数的定义域为(-1, +∞).…………………………………………… 1分

,得x>0;由,得.…………………3分
f (x)的递增区间是,递减区间是(-1, 0).………………… 4分
(Ⅱ)∵由,得x=0,x=-2(舍去)
由(Ⅰ)知f (x)在上递减,在上递增. 
高三数学(理科)答案第3页(共6页)
, 且.
∴当时,f (x)的最大值为.
故当时,不等式f (x)<m恒成立.……………………………… 9分
(Ⅲ)方程.
,
,  
,得x>1或x<-1(舍去).  由, 得.
g(x)在[0,1]上递减, 在[1,2]上递增.
为使方程在区间[0, 2]上恰好有两个相异的实根,
只须g(x)=0在[0,1]和上各有一个实数根,于是有

∴实数a的取值范围是.
练习册系列答案
相关习题

科目:高中数学 来源:不详 题型:解答题

已知在函数的图象上以N(1,n)为切点的切线的倾斜角为
(Ⅰ)求m、n的值;
(Ⅱ)是否存在最小的正整数k,使得不等式恒成立?如果存在,请求出最小的正整数k;如果不存在,请说明理由;
(Ⅲ)(文科不做)求证: 

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

,函数
(I)试讨论函数的单调性
(II)设,求证:有三个不同的实根.

查看答案和解析>>

科目:高中数学 来源:不详 题型:填空题

对于定义在区间上的函数,给出下列命题:(1)若在多处取得极大值,那么的最大值一定是所有极大值中最大的一个值;(2)若函数的极大值为,极小值为,那么;(3)若,在左侧附近,且,则的极大值点;(4)若上恒为正,则上为增函数,
其中正确命题的序号是                  

查看答案和解析>>

科目:高中数学 来源:不详 题型:单选题

在R上可导函数时取得极大值。当时取得极小值,则的取值范围是( )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

设函数.
(Ⅰ)求的单调区间;
(Ⅱ)若当时,设函数图象上任意一点处的切线的倾斜角为,求的取值范围;
(Ⅲ)若关于的方程在区间[0,2]上恰好有两个相异的实根,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(Ⅰ)若是函数的一个极值点,求实数的值;
(Ⅱ)设,当时,函数的图象恒不在直线上方,求实数的取值范围。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数
(I)(i)求函数的图象的交点A的坐标;
(ii)设函数的图象在交点A处的切线分别为是否存在这样的实数a,使得?若存在,请求出a的值和相应的点A坐标;若不存在,请说明理由。
(II)记上最小值为F(a),求的最小值。

查看答案和解析>>

科目:高中数学 来源:不详 题型:解答题

已知函数,曲线在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为,若时,有极值.
(I) 求a、b、c的值;
(II) 求在[-3,1]上的最大值和最小值.

查看答案和解析>>

同步练习册答案