【题目】已知函数f(x)=2cosxsin(x﹣ )+ .
(1)求函数f(x)的对称轴方程;
(2)若方程sin2x+2|f(x+ )|﹣m+1=0在x∈ 上有三个实数解,求实数m的取值范围.
【答案】
(1)
解:f(x)=2cosxsin(x﹣ )+ = sinxcosx﹣ =sin(2x﹣ ),
∴函数f(x)的对称轴方程x= ,k∈Z;.
(2)
解:方程sin2x+2|f(x+ )|﹣m+1=0可化为方程sin2x+2|sin2x|=m﹣1.
令g(x)=
若方程有三个实数解,则m﹣1=1或0<m﹣1<
∴m=2或1<m<1+
【解析】(1)利用差角的正弦公式、二倍角公式、辅助角公式,化简函数,即可求函数f(x)的对称轴方程;(2)方程sin2x+2|f(x+ )|﹣m+1=0可化为方程sin2x+2|sin2x|=m﹣1.令g(x)= ,根据方程有三个实数解,则m﹣1=1或0<m﹣1< ,即可求实数m的取值范围.
科目:高中数学 来源: 题型:
【题目】在平面直角坐标系xOy中,设命题p:椭圆C: + =1的焦点在x轴上;命题q:直线l:x﹣y+m=0与圆O:x2+y2=9有公共点. 若命题p、命题q中有且只有一个为真命题,求实数m的取值范围.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】设两个非零向量 与 不共线.
(1)若 = + , =2 +8 , =3( ﹣ ).求证:A,B,D三点共线;
(2)试确定实数k,使k + 和 +k 共线.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数f(x)=sin(ωx+φ)(ω>0,|φ|< )的部分图象如图所示.
(1)求函数f(x)的解析式,并写出f(x)的单调减区间;
(2)已知△ABC的内角分别是A,B,C,A为锐角,且f ,求cosA的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知方程C:x2+y2﹣2x﹣4y+m=0,
(1)若方程C表示圆,求实数m的范围;
(2)在方程表示圆时,该圆与直线l:x+2y﹣4=0相交于M、N两点,且|MN|= ,求m的值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知直线l经过直线3x+4y﹣2=0与直线2x+y+2=0的交点P,且垂直于直线x﹣2y﹣1=0.
(1)求直线l的方程;
(2)求直线l关于原点O对称的直线方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数y=Asin(ωx+φ)(A>0,ω>0)的部分图象如图所示,则f(1)+f(2)+f(3)+…+f(11)的值等于( )
A.
B.
C.
D.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】ABCD为空间四边形,AB=CD,AD=BC,AB≠AD,M,N分别是对角线AC与BD的中点,则MN与( )
A.AC,BD之一垂直
B.AC,BD都垂直
C.AC,BD都不垂直
D.AC,BD不一定垂直
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com