精英家教网 > 高中数学 > 题目详情
已知f(x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3
(x∈R,0≤θ≤π)是偶函数.
(Ⅰ)求θ和f(x)的最小正周期;
(Ⅱ)在△ABC中,角A、B、C所对的边长分别为a,b,c,a=5,b=3,f(C)=-1,求c.
考点:余弦定理的应用,三角函数中的恒等变换应用,三角函数的周期性及其求法
专题:三角函数的图像与性质
分析:(Ⅰ)将函数进行化简,利用函数是偶函数即可求θ和f(x)的最小正周期;
(Ⅱ)根据余弦定理即可求出c的值.
解答: 解:(Ⅰ)f(x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3

=sin(2x+θ)+
3
cos(2x+θ)
=2sin(2x+θ+
π
3
),
∵f(x)是偶函数,∴θ+
π
3
=
π
2
+kπ
,k∈Z
即θ=
π
6
+kπ

∵0≤θ≤π,
∴当k=0时,θ=
π
6

即f(x)=2cos2x,
∴f(x)的最小正周期T=
2

(Ⅱ)∵f(C)=-1,
∴f(C)=2cos2C=-1,
即cos2C=-
1
2

∴2C=
3
,即C=
π
3

∵a=5,b=3,
∴c2=a2+b2-2abcosC=25+9-2×5×3×
1
2
=19,
即c=
19
点评:本题主要考查三角函数的图象和性质,利用三角公式将函数进行化简是解决本题的关键,注意余弦定理的应用.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设变量x,y满足约束条件
x-y≥-1
x+y≥1
3x-y≤3
,则目标函数z=4x+y的最小值为(  )
A、1B、4C、11D、12

查看答案和解析>>

科目:高中数学 来源: 题型:

若α∈(
π
2
,π),且3cos2α=sin(
π
4
-α),则sin2α的值为(  )
A、
1
18
B、-
1
18
C、
17
18
D、-
17
18

查看答案和解析>>

科目:高中数学 来源: 题型:

已知函数f(x)=
1
3
x3-
a
2
x2
(Ⅰ)当a=2时,求曲线y=f(x)在点P(3,f(3))处的切线方程;
(Ⅱ)若函数f(x)与g(x)=
1
2
x2-ax+
a2
2
的图象有三个不同的交点,求实数a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C1
x2
a2
+
y2
b2
=1(a>b>0)的离心率为
3
2
,且经过点A(0,-1).
(Ⅰ)求椭圆的方程;
(Ⅱ)若过点(0,
3
5
)的直线与椭圆交于M,N两点(M,N点与A点不重合),求证:以MN为直径的圆恒过A点.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知A,B分别是椭圆C:
x2
a2
+
y2
b2
=1(a>b>0)
的左,右顶点,点D(1,
3
2
)
在椭圆C上,且直线DA与直线DB的斜率之积为-
b2
4

(1)求椭圆C的标准方程;
(2)点P为椭圆C上除长轴端点外的任一点,直线AP,PB与椭圆的右准线分别交于点M,N.
①在x轴上是否存在一个定点E,使得EM⊥EN?若存在,求点E的坐标;若不存在,说明理由;
②已知常数λ>0,求
PM
PN
PA
PB
的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知点A(0,-
3
4
),点B,C分别是x轴和y轴上的动点,且
AB
BC
=0,动点P满足
BC
=
1
2
CP
,设动点P的轨迹为E.
(1)求曲线E的方程;
(2)点Q(1,a),M,N为曲线E上不同的三点,且QM⊥QN,过M,N两点分别作曲线E的切线,记两切线的交点为D,求|OD|的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:

已知椭圆C:
x2
a2
+
y2
b2
=1
(a>b>0)过点(2,0),且椭圆C的离心率为
1
2

(Ⅰ)求椭圆C的方程;
(Ⅱ)若动点P在直线x=-1上,过P作直线交椭圆C于M、N两点,且
MP
=
PN
,再过P作直线l⊥MN.证明:直线l恒过定点,并求出该定点的坐标.

查看答案和解析>>

科目:高中数学 来源: 题型:

给出下列结论:
①与圆x2+y2=1及圆x2+y2-8x+12=0都外切的圆的圆心在一个椭圆上.
②若直线y=kx-1与双曲线x2-y2=4右支有两个公共点,则k∈(1,
5
2
)

③经过椭圆
x2
2
+y2=1
的右焦点F作倾斜角为600的直线l交椭圆于A,B两点,且|AF|>|BF|,则
AF
=
9+3
2
7
FB

④抛物线y2=2x上的点P到直线y=x+4的距离的最小值为
7
2
4

其中正确结论的序号是
 

查看答案和解析>>

同步练习册答案