精英家教网 > 高中数学 > 题目详情
设变量x,y满足约束条件
x-y≥-1
x+y≥1
3x-y≤3
,则目标函数z=4x+y的最小值为(  )
A、1B、4C、11D、12
考点:简单线性规划
专题:不等式的解法及应用
分析:作出不等式组对应的平面区域,利用z的几何意义,利用数形结合即可得到结论.
解答: 解:作出不等式组对应的平面区域如图:
由z=4x+y得y=-4x+z,
平移直线y=-4x+z,由图象可知当直线y=-4x+z经过点A时,
直线y=-4x+z的截距最小,此时z最小,
x-y=-1
x+y=1
,解得
x=0
y=1

即A(0,1),
此时z=0+1=1,
故选:A.
点评:本题主要考查线性规划的应用,利用z的几何意义,通过数形结合是解决本题的关键.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

为了监测某海域的船舶航行情况,在该海域设立了如图所示东西走向,相距20海里的A,B两个观测站,观测范围是到A,B两观测站距离之和不超过40海里的区域.
(Ⅰ)以AB所在直线为x轴,线段AB的垂直平分线为y轴建立平面直角坐标系,求观测区域边界曲线的方程;
(Ⅱ)某日上午7时,观测站B发现在其正东10海里的C处,有一艘轮船正以每小时8海里的速度向北偏西45°方向航行,问该轮船大约在什么时间离开观测区域?(参考数据:
2
≈1.4,
3
≈1.7
.)

查看答案和解析>>

科目:高中数学 来源: 题型:

对于平面直角坐标系内任意两点A(x1,y1),B(x2,y2),定义它们之间的一种“折线距离”:d(A,B)=|x2-x1|+|y2-y1|.则下列命题正确的是
 
.(写出所有正确命题的序号)
①若A(-1,3),B(1,0),则d(A,B)=5;
②若点C在线段AB上,则d(A,C)+d(C,B)=d(A,B);
③在△ABC中,一定有d(A,C)+d(C,B)>d(A,B);
④若A为定点,B为动点,且满足d(A,B)=1,则B点的轨迹是一个圆;
⑤若A为坐标原点,B在直线2x+y-2
5
=0上,则d(A,B)最小值为
5

查看答案和解析>>

科目:高中数学 来源: 题型:

点(1,1)在ax+y-1=0的上方,则不等式
x+y-2≥0
x-2≤0
ax-y+2≥0
所表示区域的面积S的取值范围是
 

查看答案和解析>>

科目:高中数学 来源: 题型:

已知实数x,y满足
x-y≥0
x≤1
y≥0
且目标函数z=2ax+by (a>0,b>0)的最大值是1,则ab的最大值为
 

查看答案和解析>>

科目:高中数学 来源: 题型:

如果执行如图的框图,输入N趋向于+∞,则输出的数S趋向(  )
A、1
B、
1
2
C、+∞
D、
5
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知向量
a
=(1,m),
b
=(m,2),若
a
b
,则实数m的值为(  )
A、-
2
B、
2
C、±
2
D、0

查看答案和解析>>

科目:高中数学 来源: 题型:

同时具有性质“(1)最小正周期是π;(2)图象关于直线x=
π
6
对称;(3)在[
π
6
π
3
]上是减函数”的一个函数可以是(  )
A、y=sin(
x
2
+
12
B、y=sin(2x-
π
3
C、y=cos(2x+
3
D、y=sin(2x+
π
6

查看答案和解析>>

科目:高中数学 来源: 题型:

已知f(x)=2sin(x+
θ
2
)cos(x+
θ
2
)+2
3
cos2(x+
θ
2
)-
3
(x∈R,0≤θ≤π)是偶函数.
(Ⅰ)求θ和f(x)的最小正周期;
(Ⅱ)在△ABC中,角A、B、C所对的边长分别为a,b,c,a=5,b=3,f(C)=-1,求c.

查看答案和解析>>

同步练习册答案