精英家教网 > 高中数学 > 题目详情

设函数数学公式若函数f(x)在x=3处取得极小值是数学公式
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调递增区间.

解:(I)∵f′(x)=x2-2(a+1)x+4a,
∴f′(3)=9-6(a+1)+4a=0,解得

所以-(a+1)•32+4a×3+b=,把a=代入该式,解得b=-4,
所以a=,b=-4.
(Ⅱ)由(Ⅰ)知,f′(x)=x2-5x+6,
由f′(x)>0,得x>3或x<2,
所以函数f(x)的单调递增区间是(-∞,2),(3,+∞).
分析:(Ⅰ)由函数f(x)在x=3处取得极小值是,得f′(3)=0,可解得a值,再由f(3)=可求得b值;
(Ⅱ)由(Ⅰ)可得f′(x)的表达式,解不等式f′(x)>0即可得到单调增区间;
点评:本题考查利用导数研究函数的极值及单调性问题,属基础题,准确求导,正确理解导数与单调性、极值的关系是解决问题的基础.
练习册系列答案
相关习题

科目:高中数学 来源: 题型:

设二次函数f(x)=ax2+bx+c的图象过点(0,1)和(1,4),且对于任意的实数x,不等式f(x)≥4x恒成立.
(1)求函数f(x)的表达式;
(2)设g(x)=kx+1,若F(x)=log2[g(x)-f(x)]在区间[1,2]上是增函数,求实数k的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数设函数f(x)定义在(0,+∞)上,f(1)=0,导函数f′(x)=
1
x
,g(x)=f(x)+f'(x).
(1)求g(x)的单调区间和最小值;
(2)讨论g(x)与g(
1
x
)
的大小关系;
(3)是否存在x0>0,使得|g(x)-g(x0)|<
1
x
对任意x>0成立?若存在,求出x0的取值范围;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:

设函数f(x)=
-2x+m2x+n
(m、n为常数,且m∈R+,n∈R).
(Ⅰ)当m=2,n=2时,证明函数f(x)不是奇函数;
(Ⅱ)若f(x)是奇函数,求出m、n的值,并判断此时函数f(x)的单调性.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2012•安徽模拟)设函数f(x)=x3-x2-ax(a∈R).
(I)当a=1时,求函数f(x)的极值;
(II)若函数f(x)的图象上存在与x轴平行的切线,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:

(2011•上海模拟)已知函数f(x)=(
x
a
-1)2+(
b
x
-1)2,x∈(0,+∞)
,其中0<a<b.
(1)当a=1,b=2时,求f(x)的最小值;
(2)若f(a)≥2m-1对任意0<a<b恒成立,求实数m的取值范围;
(3)设k、c>0,当a=k2,b=(k+c)2时,记f(x)=f1(x);当a=(k+c)2,b=(k+2c)2时,记f(x)=f2(x).
求证:f1(x)+f2(x)>
4c2
k(k+c)

查看答案和解析>>

同步练习册答案