【题目】设函数
的最小正周期为
,且其图象关于直线
对称,则在下面结论中正确的个数是__________.
①图象关于点
对称;②图象关于点
对称;③在
上是增函数;④在
上是增函数;⑤由
可得
必是
的整数倍.
科目:高中数学 来源: 题型:
【题目】一个盒子中装有6张卡片,上面分别写着如下六个定义域为
的函数:
,
,
,
,
,
从盒子中任取2张卡片,将卡片上的函数相乘得到一个新函数,所得新函数为奇函数的概率是 __________.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】每年10月中上旬是小麦的最佳种植时间,但小麦的发芽会受到土壤、气候等多方面因素的影响.某科技小组为了解昼夜温差的大小与小麦发芽的多少之间的关系,在不同的温差下统计了100颗小麦种子的发芽数,得到了如下数据:
温差 | 8 | 10 | 11 | 12 | 13 |
发芽数 | 79 | 81 | 85 | 86 | 90 |
(1)请根据统计的最后三组数据,求出
关于
的线性回归方程
;
(2)若由(1)中的线性回归方程得到的估计值与前两组数据的实际值误差均不超过两颗,则认为线性回归方程是可靠的,试判断(1)中得到的线性回归方程是否可靠;
(3)若100颗小麦种子的发芽率为
颗,则记为
的发芽率,当发芽率为
时,平均每亩地的收益为
元,某农场有土地10万亩,小麦种植期间昼夜温差大约为
,根据(1)中得到的线性回归方程估计该农场种植小麦所获得的收益.
附:在线性回归方程
中,
.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】在下列向量组中,可以把向量
=(3,2)表示出来的是( )
A.
=(0,0),
=(1,2)B.
=(-1,2),
=(5,-2)
C.
=(3,5),
=(6,10)D.
=(2,-3),
=(-2,3)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,椭圆
:
的左、右焦点分别为
,椭圆
上一点与两焦点构成的三角形的周长为
,离心率为
.
(Ⅰ)求椭圆
的方程;
(Ⅱ)过点
的直线
交椭圆
于
两点,问在
轴上是否存在定点
,使得
为定值?证明你的结论.
![]()
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某保险公司决定每月给推销员确定个具体的销售目标,对推销员实行目标管理.销售目标确定的适当与否,直接影响公司的经济效益和推销员的工作积极性,为此,该公司当月随机抽取了50位推销员上个月的月销售额(单位:万元),绘制成如图所示的频率分布直方图.
![]()
(1)①根据图中数据,求出月销售额在
小组内的频率.
②根据直方图估计,月销售目标定为多少万元时,能够使70%的推销员完成任务?并说明理由.
(2)该公司决定从月销售额为
和
的两个小组中,选取2位推销员介绍销售经验,求选出的推销员来自同一个小组的概率.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】对于函数
与
,若存在实数
满足
,且
,则称
为
的一个
点.
(1)证明:函数
与
不存在
的
点;
(2)若函数
与
存在
的
点
,求
的范围;
(3)已知函数
,证明:存在正实数
,对于区间
内任意一个
皆是函数
的
点.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某地区工会利用“健步行
”开展明年健步走积分奖励活动.会员每天走5千步可获积分30分(不足5千步不积分),每多走2千步再积20分(不足2千步不积分).为了解会员的健步走情况,工会在某天从系统中随机抽取了1000名会员,统计了当天他们的步数,并将样本数据分为
,
,
,
,
,
,
,
,
九组,整理得到如下频率分布直方图:
![]()
(1)从当天步数在
,
,
的会员中按分层抽样的方式抽取6人,再从这6人中随机抽取2人,求这2人积分之和不少于220分的概率;
(2)求该组数据的中位数.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com