精英家教网 > 高中数学 > 题目详情

【题目】如图,椭圆的左、右焦点分别为,椭圆上一点与两焦点构成的三角形的周长为,离心率为.

求椭圆的方程;

过点的直线交椭圆两点,问在轴上是否存在定点,使得为定值?证明你的结论.

【答案】(1)(2)

【解析】

Ⅰ)利用椭圆的定义和离心率公式、以及a,b,c的关系,求出a的值,进而可求b的值,即可得到椭圆的标准方程;

当直线的斜率存在时,设此时直线的方程为代入椭圆的方程,消去并整理得,利用韦达定理表示,从而得到定点,检验直线l的斜率不存在时也适合题意.

,

Ⅰ)由题设得2a+2c=6,e==,解得a=2,c=1,b=.

故椭圆的方程为.

右焦点为(1,0)当直线的斜率存在时,设此时直线的方程为,

A(x1,y1),B(x2,y2,,代入椭圆的方程,消去并整理得,

,,

可得.设点,

那么 ,

,

轴上存在定点,使得为定值,则有,解得,

此时,

当直线l的斜率不存在时,此时直线l的方程为x=1,x=1代入椭圆方程解得,

此时,,

综上,轴上存在定点,使得为定值.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:

【题目】已知椭圆的左、右焦点分别为,离心率,点是椭圆上的一个动点,面积的最大值是

(1)求椭圆的方程;

(2)若是椭圆上不重合的四点,相交于点,且,求此时直线的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】1970424日,我国发射了自己的第一颗人造地球卫星“东方红一号”,从此我国开启了人造卫星的新篇章,人造地球卫星绕地球运行遵循开普勒行星运动定律:卫星在以地球为焦点的椭圆轨道上绕地球运行时,其运行速度是变化的,速度的变化服从面积守恒规律,即卫星的向径(卫星与地球的连线)在相同的时间内扫过的面积相等.设椭圆的长轴长、焦距分别为,下列结论不正确的是( )

A.卫星向径的最小值为

B.卫星向径的最大值为

C.卫星向径的最小值与最大值的比值越小,椭圆轨道越扁

D.卫星运行速度在近地点时最小,在远地点时最大

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】小明每天上学都需要经过一个有交通信号灯的十字路口.已知十字路口的交通信号灯绿灯亮的时间为40秒,黄灯5秒,红灯45秒.如果小明每天到路口的时间是随机的,则小明上学时到十字路口需要等待的时间不少于20秒的概率是

A. B. C. D.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】设函数的最小正周期为,且其图象关于直线对称,则在下面结论中正确的个数是__________.

①图象关于点对称;②图象关于点对称;③在上是增函数;④在上是增函数;⑤由可得必是的整数倍.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】均为大于1的整数, n个不超过m的互不相同的正整数,互素.证明:对任意实数x,均存在一个,使得,其中表示实数r到与其最近的整数的距离

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】函数的图象的对称轴之间的最短距离为,且经过点.

1)写出函数的解析式;

2)若对任意的恒成立,求实数的取值范围;

3)求实数和正整数,使得上恰有2017个零点.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】8张卡片分别标有数字12345678,从中取出6张卡片排成32列,要求3行中仅有中间行的两张卡片上的数字之和为5,则不同的排法共有__________.

查看答案和解析>>

科目:高中数学 来源: 题型:

【题目】在直角坐标系中,直线的参数方程为为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,椭圆的极坐标方程为,其左焦点在直线上.

(1)若直线与椭圆交于两点,求的值;

(2)求椭圆的内接矩形面积的最大值.

查看答案和解析>>

同步练习册答案