精英家教网 > 高中数学 > 题目详情
18.已知函数f(x)=alnx-x2,(a∈R)
(1)当a=2时,求函数y=f(x)在区间[$\frac{1}{2}$,2]上的最大值;
(2)若存在x∈[1,+∞)使得f(x)≥0成立,求a的取值范围.

分析 (1)当a=2时,利用导数的符号求得函数的单调性,再根据函数的单调性求得函数y=f(x)在[$\frac{1}{2}$,2]上的最大值.
(2)存在x∈[1,+∞)使得f(x)≥0成立,则a≥$\frac{{x}^{2}}{lnx}$.求出右边的最小值,即可得出结论.

解答 解:(1)∵函数f(x)=alnx-x2 ,可得当a=2时,f′(x)=$\frac{2-2{x}^{2}}{x}$,
故函数y=f(x)在[$\frac{1}{2}$,1]是增函数,在[1,2]是减函数,
所以f(x)max=f(1)=-1.  
(2)存在x∈[1,+∞)使得f(x)≥0成立,则a≥$\frac{{x}^{2}}{lnx}$.
令g(x)=$\frac{{x}^{2}}{lnx}$,g′(x)=$\frac{x(2lnx-1)}{(lnx)^{2}}$,
∴1<x<$\sqrt{e}$时,g′(x)<0,x>$\sqrt{e}$时,g′(x)>0,
∴g(x)min=2e,
∴a≥2e.

点评 本题主要考查利用导数研究函数的单调性,利用函数的单调性求函数在闭区间上的最值,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

8.等差数列{an}的前n项和Sn,若a1=2,S3=12,则a5等于(  )
A.8B.10C.12D.14

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知抛物线C:y2=4x,A,B是抛物线C上的两点,且线段AB的中点坐标为(2,2),则AB所在直线的方程为(  )
A.x+y-4=0B.x-y=0C.2x-y-2=0D.2x+y-6=0

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

6.已知双曲线$\frac{x^2}{16}$-$\frac{y^2}{20}$=1,椭圆C以双曲线的焦点为顶点、顶点为焦点,椭圆C的左、右顶点分别为A,B,P(${\frac{3}{2}$,$\frac{{5\sqrt{3}}}{2}}$)
(1)求椭圆C的方程;
(2)设点M是椭圆长轴AB上的一点,点M到直线AP的距离等于|MB|,求椭圆上的点到点M的距离d的最小值.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

13.已知函数f(x)=$\frac{1}{2}$loga(ax)•loga(a2x)(a>0),且a≠1)
(I)若a=2时,求f(x)的单调区间
(2)设x∈[2,8]时,f(x)的最大值是1,最小值是-$\frac{1}{8}$,求a的值.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.已知函数f(x)=$\frac{1}{2}$x2+m的图象与函数g(x)=ln|x|的图象有四个交点,则实数m的取值范围是(-∞,$\frac{1}{2}$).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.已知函数f(x)=ax+$\frac{a}{x}$+(1-a2)lnx,a∈R.
(Ⅰ)求函数f(x)的单调区间;
(Ⅱ)若y=f(x)在x=1处的切线斜率为1.
①设g(x)=xf(x)+(t-x)f(t-x)(其中t为正常数),求函数g(x)的最小值;
②若m>0,n>0,证明:mf(m)+nf(n)≥(m+n)[f(m+n)-ln2].

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

7.已知x可以在区间[-t,4t](t>0)上任意取值,则x∈[-$\frac{1}{2}$t,t]的概率是$\frac{3}{10}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

8.函数f(x)=$\frac{x}{x-1}$在区间[2,5]上的最大值与最小值的差记为fmax-min,若fmax-min+a2-2a≤0恒成立,则a的取值范围是(  )
A.[$\frac{1}{2}$,$\frac{3}{2}$]B.[1,2]C.[0,1]D.[1,3]

查看答案和解析>>

同步练习册答案