精英家教网 > 高中数学 > 题目详情
9.已知抛物线C:y2=4x,A,B是抛物线C上的两点,且线段AB的中点坐标为(2,2),则AB所在直线的方程为(  )
A.x+y-4=0B.x-y=0C.2x-y-2=0D.2x+y-6=0

分析 设A(x1,y1),B(x2,y2),则y12=4x1,y22=4x2,两式相减,可求直线AB的斜率,进而可求直线AB的方程

解答 解:设A(x1,y1),B(x2,y2),
由中点坐标公式可得,x1+x2=4,y1+y2=4
则y12=4x1,y22=4x2
两式相减可得(y1-y2)(y1+y2)=(x1-x2),
∴kAB=1,
∴直线AB的方程为y-2=(x-2)即x-y=0.
故选:B

点评 本题考查直线与抛物线的位置关系的应用,考查抛物线的性质,考查运算求解能力,解题时要认真审题,注意韦达定理的灵活运用.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

19.若函数$f(x)=-\frac{1}{{\sqrt{b}}}{e^{\sqrt{ax}}}(a>0,b>0)$的图象在x=0出的切线与圆x2+y2=1相切,则2a+2b的最小值是(  )
A.4B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.若x∈R,不等式|x-1|+|x-2|≤a的解集为非空集合、则实数a的取值范围为(  )
A.[1,+∞)B.[2,+∞)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

17.已知函数f(x)=xlnx,g(x)=$\frac{x}{{e}^{x}}$.
(1)记F(x)=f(x)-g(x),证明:F(x)在(1,2)区间内有且仅有唯一实根;
(2)证明:对?x∈(0,+∞),xlnx>$\frac{x}{{e}^{x}}$-$\frac{2}{e}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知函数f(x)=$\frac{x-1}{{lnx-m{x^2}}}$,m∈R.
(Ⅰ)若1<x<2时,f(x)>1恒成立,求m的取值范围;
(Ⅱ)若m=0时,令an+1=f(an),n∈N*,a1=$\sqrt{e}$,求证:2nlnan≥1.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.已知函数f(x)=2cos($\frac{π}{4}$x)+4,则f(2)+f(4)+f(6)+…+f(20)=38.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.在△ABC中,a,b,c分别是角A,B,C的对边,已知3(b2+c2)=3a2+2bc.
(1)求sinA;
(2)若a=$\frac{3}{2}$,△ABC的面积S=$\frac{\sqrt{2}}{2}$,且b>c,求b,c.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

18.已知函数f(x)=alnx-x2,(a∈R)
(1)当a=2时,求函数y=f(x)在区间[$\frac{1}{2}$,2]上的最大值;
(2)若存在x∈[1,+∞)使得f(x)≥0成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.设函数f(x)=-$\frac{1}{3}$x3+$\frac{1}{2}$x2+2ax.
(1)?p≠q∈($\frac{2}{3}$,1),$\frac{f(p)-f(q)}{p-q}$>0恒成立,求实数a的取值范围;
(2)?p≠q∈($\frac{2}{3}$,1),$\frac{f(p+2)-f(q+2)}{p-q}$>1恒成立,求实数a的取值范围.

查看答案和解析>>

同步练习册答案