| A. | 4 | B. | $\sqrt{2}$ | C. | 2 | D. | $2\sqrt{2}$ |
分析 利用导数求出切线方程,利用直线与圆的位置关系得出a+b=1,再利用基本不等式,即可求出2a+2b的最小值.
解答 解:∵$f'(x)=-\frac{{\sqrt{a}}}{{\sqrt{b}}}{e^{\sqrt{a}}}^x,\;\;∴f'(0)=-\frac{{\sqrt{a}}}{{\sqrt{b}}}$,
切点为$({0,\;\;-\frac{1}{{\sqrt{b}}}})$,
由切线方程$y=-\frac{{\sqrt{a}}}{{\sqrt{b}}}x-\frac{1}{{\sqrt{b}}}$与圆x2+y2=1相切得a+b=1,
∴${2^a}+{2^b}≥2\sqrt{{2^{a+b}}}=2\sqrt{2}$,
故选D.
点评 本题考查导数知识的综合运用,考查直线与圆的位置关系,考查基本不等式的运用,属于中档题.
科目:高中数学 来源: 题型:填空题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-4] | B. | [4,+∞) | C. | (-∞,-4]∪[4,+∞) | D. | (-∞,-4)∪(4,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | x+y-4=0 | B. | x-y=0 | C. | 2x-y-2=0 | D. | 2x+y-6=0 |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com