精英家教网 > 高中数学 > 题目详情
9.若X~B(n,p),且E(X)=6,D(X)=3,则P(X=1)的值为3•2-10

分析 根据二项分布的期望和方差的计算公式,求得p和n的值,根据P(X=k)=C12k•($\frac{1}{2}$)k•($\frac{1}{2}$)n-k,即可求得P(x=1)的值.

解答 解:由题意Ex=np=6,Dx=np(1-p)=3,解得p=$\frac{1}{2}$,n=12,
∴P(x=1)=C121•$\frac{1}{2}$•($\frac{1}{2}$)11=3•2-10
故答案为:3•2-10

点评 本题考查离散型随机变量的期望和方差,考查项分布的期望和方差的计算公式,体现了解方程组的思想.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=13-8x+$\sqrt{2}$ x2,且f′(x0)=4,求x0

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.某食品厂为了促销,制作了3种不同的精美卡片,每袋食品中随机装入一张卡片,集齐3种卡片可获奖,现购买该食品4袋,能获奖的概率为(  )
A.$\frac{4}{27}$B.$\frac{8}{27}$C.$\frac{4}{9}$D.$\frac{8}{9}$

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

17.设m∈R,过定点A的动直线x+my=0和过定点B的动直线mx-y-m+3=0交于点P(x,y),则|$\overrightarrow{PA}$|•|$\overrightarrow{PB}$|的最大值为5.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

4.已知$\overrightarrow{a}$=(m,1),$\overrightarrow{b}$=(2,-1),若$\overrightarrow{a}$∥($\overrightarrow{b}$-$\overrightarrow{a}$),则实数m=-2.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.在同一平面直角坐标系中,将直线x+y+2=0变成直线8x+y+8=0,写出满足条件的伸缩变换公式$\left\{\begin{array}{l}{x′=\frac{1}{2}x}\\{y′=4y}\end{array}\right.$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

1.已知直线l1:4x-3y+6=0和直线l2:x=-$\frac{p}{2}$(p>0).若抛物线C:y2=2px上的点到直线l1和直线l2的距离之和的最小值为2.
(I)求抛物线C的方程;
(II)若以抛物线上任意一点M为切点的直线l与直线l2交于点N,试问在x轴上是否存在定点Q,使Q点在以MN为直径的圆上,若存在,求出点Q的坐标,若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.一个半径为2的球体经过切割之后所得几何体的三视图如图所示,则该几何体的表面积为(  )
A.16πB.12πC.14πD.17π

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

19.若函数$f(x)=-\frac{1}{{\sqrt{b}}}{e^{\sqrt{ax}}}(a>0,b>0)$的图象在x=0出的切线与圆x2+y2=1相切,则2a+2b的最小值是(  )
A.4B.$\sqrt{2}$C.2D.$2\sqrt{2}$

查看答案和解析>>

同步练习册答案