精英家教网 > 高中数学 > 题目详情
5.已知函数f(x)=sin(ωx+φ)+k(A>0,|φ|<$\frac{π}{2}$)的最大值为3,最小值为1,最小正周期为π,直线x=$\frac{π}{3}$是其图象的一条对称轴,将函数f(x)的图象向左平移$\frac{π}{6}$个单位得到函数g(x)的图象,则函数g(x)的解析式可以为(  )
A.g(x)=sin2x+2B.g(x)=sin(2x+$\frac{π}{6}$)+2C.g(x)=sin(2x+$\frac{π}{6}$)+1D.g(x)=sin(4x-$\frac{π}{3}$)+2

分析 由题意求出A,T,解出ω,直线x=$\frac{π}{3}$是其图象的一条对称轴,求出φ,得到函数解析式,由函数y=Asin(ωx+φ)的图象变换即可得解.

解答 解:由题意可知ω=$\frac{2π}{π}$=2,2×$\frac{π}{3}$+φ=kπ+$\frac{π}{2}$,φ=kπ-$\frac{π}{6}$,取k=0,可得φ=-$\frac{π}{6}$,
故可得:f(x)=sin(2x-$\frac{π}{6}$)+2,
将函数f(x)的图象向左平移$\frac{π}{6}$个单位得到函数g(x)的解析式为:g(x)=sin[2(x+$\frac{π}{6}$)-$\frac{π}{6}$]+2=sin(2x+$\frac{π}{6}$)+2,
故选:B.

点评 本题考查由y=Asin(ωx+φ)的部分图象确定其解析式,函数y=Asin(ωx+φ)的图象变换,考查学生分析问题解决问题的能力,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:填空题

15.给出下列四个命题:
(1)若平面α上有不共线的三点到平面β的距离相等,则α∥β;
(2)两条异面直线在同一平面内的射影可能是两条平行直线;
(3)两条异面直线中的一条平行于平面α,则另一条必定不平行于平面α;
(4)a,b为异面直线,则过a且与b平行的平面有且仅有一个.
其中正确命题的序号是(2)(4).

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.为了调查甲、乙两个交通站的车流量,随机选取了14天,统计每天上午8:00-12:00间各自的车流量(单位:百辆),得如下所示的统计图,
(1)甲、乙两个交通站的车流量的极差分别是多少?
(2)甲交通站的车流量在[10,40]间的频率是多少?
(3)甲、乙两个交通站哪个站更繁忙?并说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

13.U=x2+y2+1与V=2(x+y-1)的大小关系是U>V.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.△ABC的顶点A在y2=4x上,B,C两点在直线x-2y+5=0上,若|$\overrightarrow{AB}$-$\overrightarrow{AC}$|=2$\sqrt{5}$,则△ABC面积的最小值为1.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.如图,已知椭圆$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1(a>b>0)的左右焦点分别为F1,F2,离心率为$\frac{{\sqrt{2}}}{2}$,它的四个顶点连成的菱形的面积为8$\sqrt{2}$.过动点P(不在x轴上)的直线PF1,PF2与椭圆的交点分别为A,B和C,D.
(1)求此椭圆的标准方程;
(2)是否存在点P,使|AB|=2|CD|,若存在求出点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

9.已知点F1(0,-$\sqrt{3}$),F2(0,$\sqrt{3}$),曲线r上任意一点P满足|PF1|+|PF2|=4,抛物线x2=2py,(p>0).
(1)若抛物线的焦点在曲线r上,求曲线r的标准方程和抛物线标准方程;
(2)设抛物线的焦点是F(0,$\frac{1}{2}$),在抛物线上是否存在点M,使得以点M为切点的切线与曲线r相交于A,B两点,且以AB为直径的圆过坐标原点O?若存在,求出点M的坐标;若不存在,说明理由.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.在平面直角坐标系中,O为坐标原点,A(1,0),B(0,-$\sqrt{3}$),点D是圆C:(x+1)2+y2=1上的动点,则|$\overrightarrow{OA}$+$\overrightarrow{OB}$+$\overrightarrow{OD}$|的最大值为(  )
A.2B.$\sqrt{3}$+1C.$\sqrt{3}$+$\sqrt{2}$D.$\sqrt{3}$+2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.“a=1”是“直线l:y=kx+a与圆C:x2-2x+y2=0相交”的(  )
A.充分不必要条件B.必要不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

同步练习册答案