2£®Èçͼ£¬ÒÑÖªÍÖÔ²$\frac{x^2}{a^2}+\frac{y^2}{b^2}$=1£¨a£¾b£¾0£©µÄ×óÓÒ½¹µã·Ö±ðΪF1£¬F2£¬ÀëÐÄÂÊΪ$\frac{{\sqrt{2}}}{2}$£¬ËüµÄËĸö¶¥µãÁ¬³ÉµÄÁâÐεÄÃæ»ýΪ8$\sqrt{2}$£®¹ý¶¯µãP£¨²»ÔÚxÖáÉÏ£©µÄÖ±ÏßPF1£¬PF2ÓëÍÖÔ²µÄ½»µã·Ö±ðΪA£¬BºÍC£¬D£®
£¨1£©Çó´ËÍÖÔ²µÄ±ê×¼·½³Ì£»
£¨2£©ÊÇ·ñ´æÔÚµãP£¬Ê¹|AB|=2|CD|£¬Èô´æÔÚÇó³öµãPµÄ×ø±ê£»Èô²»´æÔÚ£¬Çë˵Ã÷ÀíÓÉ£®

·ÖÎö £¨1£©Ö±½Ó¼ÆËã¼´µÃ½áÂÛ£»
£¨2£©·ÖÖ±ÏßPF2µÄбÂÊ´æÔÚÓë²»´æÔÚÁ½ÖÖÇé¿öÌÖÂÛ¼´¿É£»

½â´ð ½â£º½â£º£¨1£©¡ßS=2ab=8$\sqrt{2}$£¬e=$\frac{c}{a}$=$\frac{\sqrt{2}}{2}$£¬ÇÒa£¾b£¾0£¬
¡àa=2$\sqrt{2}$£¬b=c=2£¬
¡àËùÇóµÄÍÖÔ²·½³ÌΪ£º$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1£»
£¨2£©½áÂÛ£º²»´æÔÚÕâÑùµÄµãP£¬Ê¹µÃ|AB|=2|CD|³ÉÁ¢£®
ÀíÓÉÈçÏ£º
Èô|AB|=2|CD|³ÉÁ¢£¬µãP±ØÔÚyÖáµÄÓҲ࣬
¹ÊÖ±ÏßPF1±Ø´æÔÚÉèΪk1£¬
µ±Ö±ÏßPF2µÄбÂÊ´æÔÚʱÉèΪk2£¬
´ËʱÓÐÖ±ÏßPF1ÓÉy=k1£¨x+2£©´úÈë$\frac{{x}^{2}}{8}$+$\frac{{y}^{2}}{4}$=1£¬
ÏûÈ¥yÕûÀíµÃ£¬£¨1+2k12£©x2+8k12x+8£¨k12-1£©=0
Ö±ÏßPF1Ϊ£ºy=k1£¨x+2£©£¬Ö±ÏßPF2Ϊ£ºy=k2£¨x-2£©£¬
ÓÉΤ´ï¶¨Àí£¬µÃx1+x2=-$\frac{8{k}_{1}^{2}}{1+2{k}_{1}^{2}}$£¬${x}_{1}{x}_{2}=\frac{8£¨{k}_{1}^{2}-1£©}{1+2{k}_{1}^{2}}$
¡à$|AB|=\sqrt{1+{k}_{1}^{2}}•\sqrt{£¨{x}_{1}+{x}_{2}£©^{2}-4{x}_{1}{x}_{2}}$
=$\sqrt{1+{k}_{1}^{2}}•\sqrt{£¨\frac{-8{k}_{1}^{2}}{1+2{k}_{1}^{2}}£©^{2}-4•\frac{8£¨{k}_{1}^{2}-1£©}{1+2{k}_{1}^{2}}}$
=4$\sqrt{2}•\frac{1+{k}_{1}^{2}}{1+2{k}_{1}^{2}}$
ͬÀí¿ÉµÃ|CD|=4$\sqrt{2}•\frac{1+{k}_{2}^{2}}{1+2{k}_{2}^{2}}$
Èô|AB|=2|CD³ÉÁ¢£®ÔòÓÐ$\frac{1+{k}_{1}^{2}}{1+2{k}_{1}^{2}}=2•\frac{1+{k}_{2}^{2}}{1+2{k}_{2}^{2}}$
ÕûÀíµÃ£º2k12k22+3k12+1=0£¬
ÒòΪ´Ë·½³ÌÎÞʵÊý½â£¬ËùÒÔ²»´æÔÚÕâÑùµÄµãP£¬Ê¹µÃ|AB|=2|CD|³ÉÁ¢£®
µ±Ö±ÏßPF2µÄбÂʲ»´æÔÚʱ£¬|CD|=$\frac{2{b}^{2}}{a}$=2$\sqrt{2}$£¬
´Ëʱ|AB|=2|CD|=4$\sqrt{2}$=2a²»³ÉÁ¢£®
×ÛÉϿɵ㬲»´æÔÚÕâÑùµÄµãP£¬Ê¹µÃ|AB|=2|CD|³ÉÁ¢£»

µãÆÀ ±¾Ì⿼²éÍÖÔ²µÄ¼òµ¥ÐÔÖÊ£¬¿¼²éÔËËãÇó½âÄÜÁ¦£¬×¢Òâ½âÌâ·½·¨µÄ»ýÀÛ£¬ÊôÓÚÖеµÌ⣮

Á·Ï°²áϵÁдð°¸
Ïà¹ØÏ°Ìâ

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

20£®½ÌÊÒÄÚÓÐÒ»°ÑÖ±³ß£¬ÎÞÂÛÕâ°ÑÖ±³ßÔõÑù·ÅÖã¬ÔÚ½ÌÊҵĵØÃæÉÏ×ÜÄÜ»­³öÒ»ÌõÖ±Ïߣ¬Ê¹ÕâÌõÖ±ÏßÓëÖ±³ß£¨¡¡¡¡£©
A£®Æ½ÐÐB£®´¹Ö±C£®ÒìÃæD£®Ïཻ

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

1£®£¨x-3£©nµÄÕ¹¿ªÊ½ÖÐÖ»ÓеÚ3ÏîµÄ¶þÏîʽϵÊý×î´ó£¬ÔònΪ£¨¡¡¡¡£©
A£®3B£®4C£®5D£®6

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

18£®ÒÑÖªËæ»ú±äÁ¿X·þ´ÓÕý̬·Ö²¼N£¨1£¬¦Ò2£©£¬ÈôP£¨X¡Ü2£©=0.72£¬ÔòP£¨X¡Ü0£©=£¨¡¡¡¡£©
A£®0.22B£®0.28C£®0.36D£®0.64

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

5£®ÒÑÖªº¯Êýf£¨x£©=sin£¨¦Øx+¦Õ£©+k£¨A£¾0£¬|¦Õ|£¼$\frac{¦Ð}{2}$£©µÄ×î´óֵΪ3£¬×îСֵΪ1£¬×îСÕýÖÜÆÚΪ¦Ð£¬Ö±Ïßx=$\frac{¦Ð}{3}$ÊÇÆäͼÏóµÄÒ»Ìõ¶Ô³ÆÖᣬ½«º¯Êýf£¨x£©µÄͼÏóÏò×óÆ½ÒÆ$\frac{¦Ð}{6}$¸öµ¥Î»µÃµ½º¯Êýg£¨x£©µÄͼÏó£¬Ôòº¯Êýg£¨x£©µÄ½âÎöʽ¿ÉÒÔΪ£¨¡¡¡¡£©
A£®g£¨x£©=sin2x+2B£®g£¨x£©=sin£¨2x+$\frac{¦Ð}{6}$£©+2C£®g£¨x£©=sin£¨2x+$\frac{¦Ð}{6}$£©+1D£®g£¨x£©=sin£¨4x-$\frac{¦Ð}{3}$£©+2

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

7£®ÒÑÖªÍÖÔ²µÄÖÐÐÄÔÚÔ­µã£¬×ó½¹µãΪ${F_1}£¨-\sqrt{3}£¬0£©$£¬ÓÒ¶¥µãΪD£¨2£¬0£©£¬ÉèµãA£¨1£¬$\frac{1}{2}$£©£®
£¨1£©ÇóÍÖÔ²µÄ±ê×¼·½³Ì
£¨2£©ÈôÒ»¹ýÔ­µãµÄÖ±ÏßÓëÍÖÔ²½»ÓÚµãB£¬C£¬Çó¡÷ABCµÄÃæ»ý×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÌî¿ÕÌâ

14£®Ò»¸öËùÓÐÀⳤ¾ùΪ$\sqrt{2}$µÄÕýÈýÀâ×¶£¨µ×ÃæÊÇÕýÈý½ÇÐΣ¬¶¥µãÔÚµ×ÃæµÄÉäÓ°Êǵ×ÃæµÄÖÐÐÄ£©µÄ¶¥µãÓëµ×ÃæµÄÈý¸ö¶¥µã¾ùÔÚij¸öÇòµÄÇòÃæÉÏ£¬Ôò´ËÇòµÄÌå»ýΪ$\frac{\sqrt{3}}{2}$£®

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£ºÑ¡ÔñÌâ

11£®ÏÂÁÐÊýÁÐÖУ¬ÊǵȲîÊýÁеÄÊÇ£¨¡¡¡¡£©
A£®-1£¬0£¬-1£¬0£¬¡­B£®1£¬11£¬111£¬1111£¬¡­C£®1£¬5£¬9£¬13£¬¡­D£®1£¬2£¬4£¬8£¬¡­

²é¿´´ð°¸ºÍ½âÎö>>

¿ÆÄ¿£º¸ßÖÐÊýѧ À´Ô´£º ÌâÐÍ£º½â´ðÌâ

12£®ÒÑÖªÊýÁÐ{an}Âú×ãa1=10£¬an=$\left\{\begin{array}{l}{{2}^{{a}_{n-1}}£¬n=2k}\\{-1+lo{g}_{2}{a}_{n-1}£¬n=2k+1}\end{array}\right.$£¨k¡ÊN*£©£¬ÆäǰnÏîºÍΪSn£®
£¨1£©ÇóÊýÁÐ{an}µÄͨÏʽ£»
£¨2£©ÇóSnµÄ×î´óÖµ£®

²é¿´´ð°¸ºÍ½âÎö>>

ͬ²½Á·Ï°²á´ð°¸