【题目】如图所示,在三棱锥P -ABC中,PA⊥底面ABC,∠BCA
90°,AP
AC,点D,E分别在棱PB,PC上,且BC∥平面ADE.
![]()
(Ⅰ)求证:DE⊥平面PAC;
(Ⅱ)若PC⊥AD,且三棱锥P-ABC的体积为8,求多面体ABCED的体积.
【答案】(Ⅰ)见解析;(Ⅱ)6.
【解析】试题分析:(Ⅰ)欲证DE
平面PAC,观察本题的条件,BC⊥平面PAC易证,而BC||平面ADE结合DE=平面PBC
平面ADE,可证得BC||ED,由此证法思路已明.由(Ⅰ),结合PC
AD,可证得AE
面PBC,即得
,再由,
,AP=AC可得出E是中点,ED是
PBC的中位线.
所以
,根据
,可得体积.
试题解析:(Ⅰ)
BC||平面ADE, BC
平面PBC, 平面PBC
平面ADE=DE
BC||ED 2分
∵PA
底面ABC,BC
底面ABC ∴PA
BC. 3分
又
,∴AC
BC.
∵PA
AC="A," ∴BC
平面PAC. 6分
∴DE
平面
. 7分
(Ⅱ)由(Ⅰ)知, DE
平面PAC,
∵PC
平面PAC,∴DE
PC, 8分
又∵PC
AD,AD
DE=D,∴ PC
平面ADE,∴ AE
PC, 9分
∵AP="AC," ∴E是PC的中点,ED是
PBC的中位线. 10分
12分
∴
13分
∴
14分
科目:高中数学 来源: 题型:
【题目】已知点
在圆
:
上,而
为
在
轴上的投影,且点
满足
,设动点
的轨迹为曲线
.
(1)求曲线
的方程;
(2)若
是曲线
上两点,且
,
为坐标原点,求
的面积的最大值.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】某印刷厂为了研究印刷单册书籍的成本y(单位:元)与印刷册数x(单位:千册)之间的关系,在印制某种书籍时进行了统计,相关数据见下表:
![]()
根据以上数据,技术人员分别借助甲、乙两种不同的回归模型,得到了两个回归方程,甲:
为了评价两种模型的拟合效果,完成以下任务:
(1)(ⅰ)完成下表(计算结果精确到0.1):
![]()
(ⅱ)分别计算模型甲与模型乙的残差平方和
及
,并通过比较
,
的大小,判断哪个模型拟合效果更好.
(2)该书上市后,受到广大读者的热烈欢迎,不久便全部售罄,于是印刷厂决定进行二次印刷,根据市场调查,新需求量为8千册(概率为0.8)或10千册(概率为0.2),若印刷厂以没测5元的价格将书籍出售给订货商,问印刷厂二次印刷8千册还是10千册恒获得更多的利润?(按(1)中拟合效果较好的模型计算印刷单册书的成本)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】如图,在四棱锥P﹣ABCED中,PD⊥面ABCD,四边形ABCD为平行四边形,∠DAB=60°,AB=PA=2AD=4, ![]()
(1)若E为PC中点,求证:PA∥平面BDE
(2)求三棱锥D﹣BCP的体积.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】函数f(x)=log
(x2﹣ax+3)在(﹣∞,1)上单调递增,则a的范围是( )
A.(2,+∞)
B.[2,+∞)
C.[2,4]
D.[2,4)
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知椭圆
:
过点
,
为椭圆的半焦距,且
,过点
作两条互相垂直的直线
,
与椭圆
分别交于另两点
,
.
(1)求椭圆
的方程;
(2)若直线
的斜率为
,求
的面积;
(3)若线段
的中点在
轴上,求直线
的方程.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】已知函数
在
上是减函数,在
上是增函数,函数
在
上有三个零点.
(1)求
的值;
(2)若1是其中一个零点,求
的取值范围;
(3)若
,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.
查看答案和解析>>
科目:高中数学 来源: 题型:
【题目】己知函数
(其中e为自然对数的底数),
.
(I)求函数
的单调区间;
(II)设
,.已知直线
是曲线
的切线,且函数
上是增函数.
(i)求实数
的值;
(ii)求实数c的取值范围.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com