精英家教网 > 高中数学 > 题目详情
17.已知数列{an}的第一项a1=1,且an+1=$\frac{a_n}{{1+{a_n}}}$,(n=1,2,3,…),试归纳出这个数列的通项公式(  )
A.${a_n}=\frac{1}{n}$B.${a_n}=\frac{1}{n+1}$C.an=nD.${a_{n+1}}=\frac{1}{n}$

分析 利用递推关系式可求出a2,a3,a4,…,进而猜想归纳出其通项公式

解答 解:由题意可得:a1=1,且an+1=$\frac{a_n}{{1+{a_n}}}$,
则a2=$\frac{1}{1+1}$=$\frac{1}{2}$,a3=$\frac{\frac{1}{2}}{1+\frac{1}{2}}$=$\frac{1}{3}$,a4=$\frac{\frac{1}{3}}{1+\frac{1}{3}}$=$\frac{1}{4}$

∴通过观察归纳出规律:其通项应是一个真分数,分子为1,分母与相应的下标相同,
故an=$\frac{1}{n}$(n∈N*).
可用数学归纳法或取倒数法加以证明,
故选:A

点评 正确理解递推关系并求出数列的前几项和使用归纳推理是解题的关键

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

12.已知a,b∈R,且a>b,求证:2a+$\frac{1}{{a}^{2}-2ab+{b}^{2}}$≥2b+3.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

8.已知数列{an}是等比数列,且a2=1,则a1+a2+a3的取值范围是[-1,3].

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.已知椭圆C1的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,双曲线C2的左、右焦点分别是C1的左、右顶点,而以双曲线C2的左、右顶点分别是椭圆C1的左、右焦点.
(1)求双曲线C2的方程;
(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C2相交于不同的两点E、F,若△OEF的面积为2$\sqrt{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

12.在平面直角坐标系中,$M(\sqrt{2},\sqrt{2})$,P点是以原点O为圆心的单位圆上的动点,则$|\overrightarrow{OM}+\overrightarrow{OP}|$的最大值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

2.某学校记者团由理科组和文科组构成,具体数据如表所示:
组别理科文科
性别男生女生男生女生
人数3331
学校准备从中选4人到社区举行的大型公益活动中进行采访,每选出一名男生,给其所在小组记1分,每选出一名女生,给其所在小组记2分,若要求被选出的4人中理科组、文科组的学生都有.
(Ⅰ)求理科组恰好记4分的概率;
(Ⅱ)设文科组男生被选出的人数为X,求随机变量的分布列X和数学期望E(x).

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.若关于x的不等式|x-2|+|x-a|≥a在R上恒成立,则a的最大值是(  )
A.0B.1C.-1D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B、C,若$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{BC}$,则双曲线的渐近线方程为(  )
A.y=±$\sqrt{2}$xB.y=±$\sqrt{3}$xC.y=±2xD.y=±$\sqrt{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,已知二面角α-l-β的平面角为θ,PA⊥α,PB⊥β,A、B为垂足,且PA=4,PB=5,设A、B到棱l的距离分别为x、y,当θ变化时,点(x,y)的轨迹是下列图形中的(  )
A.B.C.D.

查看答案和解析>>

同步练习册答案