| A. | B. | C. | D. |
分析 在平面α内过A作AM⊥l,垂足为M,连结BM,分别在Rt△PAM和Rt△PBM中使用勾股定理计算PM即可得出轨迹方程.
解答
解:在平面α内过A作AM⊥l,垂足为M,连结BM,
∵PA⊥α,AM?α,∴PA⊥AM,
∴PM=$\sqrt{P{A}^{2}+A{M}^{2}}$=$\sqrt{16+{x}^{2}}$,
同理PM=$\sqrt{P{B}^{2}+B{M}^{2}}$=$\sqrt{25+{y}^{2}}$,
∴16+x2=25+y2,即x2-y2=9,
又x≥0,y≥0,
∴(x,y)的轨迹是双曲线$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{9}=1$在第一象限内的部分.
故选:D.
点评 本题考查了线面垂直的性质,属于基础题.
科目:高中数学 来源: 题型:选择题
| A. | ${a_n}=\frac{1}{n}$ | B. | ${a_n}=\frac{1}{n+1}$ | C. | an=n | D. | ${a_{n+1}}=\frac{1}{n}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | 2 | B. | 4 | C. | 2$\sqrt{2}$ | D. | $\sqrt{2}$ |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
| 甲班 | 乙班 | 合计 | |
| 优秀 | |||
| 不优秀 | |||
| 合计 |
| P(k2≥k) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
| k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,0) | B. | (0,2) | C. | (2,+∞) | D. | (-∞,0)∪(2,+∞) |
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:解答题
查看答案和解析>>
科目:高中数学 来源: 题型:选择题
| A. | (-∞,-1)∪(1,+∞) | B. | (-1,1) | C. | (-1,+∞) | D. | (1,+∞) |
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com