精英家教网 > 高中数学 > 题目详情
7.如图所示,已知二面角α-l-β的平面角为θ,PA⊥α,PB⊥β,A、B为垂足,且PA=4,PB=5,设A、B到棱l的距离分别为x、y,当θ变化时,点(x,y)的轨迹是下列图形中的(  )
A.B.C.D.

分析 在平面α内过A作AM⊥l,垂足为M,连结BM,分别在Rt△PAM和Rt△PBM中使用勾股定理计算PM即可得出轨迹方程.

解答 解:在平面α内过A作AM⊥l,垂足为M,连结BM,
∵PA⊥α,AM?α,∴PA⊥AM,
∴PM=$\sqrt{P{A}^{2}+A{M}^{2}}$=$\sqrt{16+{x}^{2}}$,
同理PM=$\sqrt{P{B}^{2}+B{M}^{2}}$=$\sqrt{25+{y}^{2}}$,
∴16+x2=25+y2,即x2-y2=9,
又x≥0,y≥0,
∴(x,y)的轨迹是双曲线$\frac{{x}^{2}}{9}-\frac{{y}^{2}}{9}=1$在第一象限内的部分.
故选:D.

点评 本题考查了线面垂直的性质,属于基础题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

17.已知数列{an}的第一项a1=1,且an+1=$\frac{a_n}{{1+{a_n}}}$,(n=1,2,3,…),试归纳出这个数列的通项公式(  )
A.${a_n}=\frac{1}{n}$B.${a_n}=\frac{1}{n+1}$C.an=nD.${a_{n+1}}=\frac{1}{n}$

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

18.已知$\overrightarrow{a}$=(1,-1),$\overrightarrow{OA}$=$\overrightarrow{a}$-$\overrightarrow{b}$,$\overrightarrow{OB}$=$\overrightarrow{a}$+$\overrightarrow{b}$,若△OAB是以点O为直角顶点的等腰直角三角形,则△OAB的面积为(  )
A.2B.4C.2$\sqrt{2}$D.$\sqrt{2}$

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.某大学高等数学这学期分别用A,B两种不同的数学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:
   
 甲班乙班合计
优秀   
不优秀   
合计   
(1)学校规定:成绩不得低于85分的为优秀,请填写下面的2×2列联表,并判断“能否在犯错误率的概率不超过0.025的前提下认为成绩优异与教学方式有关?”
下面临界值表仅供参考:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考方式:${k^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)
(2)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

2.过抛物线C:y2=4x的焦点F的直线交抛物线C于A,B两点,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,则M的横坐标的取值范围为(  )
A.(-∞,0)B.(0,2)C.(2,+∞)D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知函数f(x)=ex+$\frac{ax}{x+1}$-1(a∈R且a为常数).
(1)当a=-1时,讨论函数f(x)在(-1,+∞)的单调性;
(2)设y=t(x)可求导数,且它的导函数t′(x)仍可求导数,则t′(x)再次求导所得函数称为原函数y=t(x)的二阶函数,记为t′′(x),利用二阶导函数可以判断一个函数的凹凸性.一个二阶可导的函数在区间[a,b]上是凸函数的充要条件是这个函数在(a,b)的二阶导函数非负.
若g(x)=(x+1)[f(x)+1]+(a-$\frac{1}{{2}^{{e}^{4}}}$)x2在(-∞,-1)不是凸函数,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

19.已知函数f(x)=1nx-$\frac{a(x-1)}{x+1}$.(a∈R)
(Ⅰ)讨论f(x)的单调性;
(Ⅱ)若$\frac{(x+1)1nx+2a}{{{{(x+1)}^2}}}<\frac{1nx}{x-1}$恒成立,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

16.在△ABC中,内角A,B,C的对边分别为a,b,c,且asinB=$\sqrt{3}$bcosA.
(Ⅰ)求A;
(Ⅱ)若a=$\sqrt{7}$,c-b=1,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数$g(x)=({-{x^4}-{x^2}})+\frac{1}{{{e^{|x|}}-1}}$,若不等式g(x2)>g(ax)对一切x∈[-1,0)∪(0,1]恒成立,则a的取值范围是(  )
A.(-∞,-1)∪(1,+∞)B.(-1,1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

同步练习册答案