精英家教网 > 高中数学 > 题目详情
2.过抛物线C:y2=4x的焦点F的直线交抛物线C于A,B两点,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,则M的横坐标的取值范围为(  )
A.(-∞,0)B.(0,2)C.(2,+∞)D.(-∞,0)∪(2,+∞)

分析 设出直线AF的方程,与抛物线联立,求出B的坐标,求出直线AB,FN的斜率,从而求出直线BN的方程,根据A、M、N三点共线,可求出M的横坐标的表达式,从而求出m的取值范围.

解答 解:抛物线方程为y2=4x,F(1,0),可设A(t2,2t),t≠0,t≠±1,
∵AF不垂直y轴,
∴设直线AF:x=sy+1(s≠0),
联立$\left\{\begin{array}{l}{{y}^{2}=4x}\\{x=sy+1}\end{array}\right.$,得y2-4sy-4=0.
y1y2=-4,
∴B($\frac{1}{{t}^{2}}$,-$\frac{2}{t}$),
又直线AB的斜率为$\frac{2t}{{t}^{2}-1}$,故直线FN的斜率为$\frac{{t}^{2}-1}{2t}$,
从而得FN:y=-$\frac{{t}^{2}-1}{2t}$(x-1),直线BN:y=-$\frac{2}{t}$,
则N($\frac{{t}^{2}+3}{{t}^{2}-1}$,-$\frac{2}{t}$),
设M(m,0),由A、M、N三点共线,得$\frac{2t}{{t}^{2}-m}$=$\frac{2t+\frac{2}{t}}{{t}^{2}-\frac{{t}^{2}+3}{{t}^{2}-1}}$,
于是m=$\frac{2{t}^{2}}{{t}^{2}-1}$=$\frac{2}{1-\frac{1}{{t}^{2}}}$,得m<0或m>2.
经检验,m<0或m>2满足题意.
∴点M的横坐标的取值范围为(-∞,0)∪(2,+∞).
故选D.

点评 本题考查抛物线的简单性质,考查直线与圆锥曲线位置关系的应用,考查数学转化思想方法,属中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

12.在平面直角坐标系中,$M(\sqrt{2},\sqrt{2})$,P点是以原点O为圆心的单位圆上的动点,则$|\overrightarrow{OM}+\overrightarrow{OP}|$的最大值是(  )
A.1B.2C.3D.4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

13.已知f(x)=cos(ωx+$\frac{π}{3}$)(ω>0)的图象与y=1的图象的两相邻交点间的距离为π,要得到y=f(x)的图象,只需把y=sinωx的图象(  )
A.向左平移$\frac{5π}{12}$个单位B.向右平移$\frac{5π}{12}$个单位
C.向左平移$\frac{7π}{12}$个单位D.向右平移$\frac{7π}{12}$个单位

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某大型超市拟对店庆当天购物满288元的顾客进行回馈奖励.规定:顾客转动十二等分且质地均匀的圆形转盘(如图),待转盘停止转动时,若指针指向扇形区域,则顾客可领取此区域对应面额(单位:元)的超市代金券.假设转盘每次转动的结果互不影响.
(Ⅰ)若x0≠60,求顾客转动一次转盘获得60元代金券的概率;
(Ⅱ)某顾客可以连续转动两次转盘并获得相应奖励,当x0=20时,求该顾客第一次获得代金券的面额不低于第二次获得代金券的面额的概率;
(Ⅲ)记顾客每次转动转盘获得代金券的面额为X,当x0取何值时,X的方差最小?
(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.复数$\frac{3+i}{1-i}$=(  )
A.1+2iB.1-2iC.-1+2iD.-1-2i

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,已知二面角α-l-β的平面角为θ,PA⊥α,PB⊥β,A、B为垂足,且PA=4,PB=5,设A、B到棱l的距离分别为x、y,当θ变化时,点(x,y)的轨迹是下列图形中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

14.某颜料公司生产A,B两种产品,其中生产每吨A产品,需要甲染料1吨,乙染料4吨,丙染料2吨,生产每吨B产品,需要甲染料1吨,乙染料0吨,丙染料5吨,且该公司一条之内甲、乙、丙三种染料的用量分别不超过50吨、160吨和200吨,如果A产品的利润为300元/吨,B产品的利润为200元/吨,则该颜料公司一天之内可获得的最大利润为14000元.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=x2-x+1,g(x)=kx,则“|k|≤1”是“f (x)≥g(x) 在R上恒成立”的(  )
A.充分但不必要条件B.必要但不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直三棱柱ABC-A1B1C1的所有棱长都相等,D,E分别是AB,A1C1的中点,如图所示.
(1)求证:DE∥平面BCC1B1
(2)求DE与平面ABC所成角的正切值.

查看答案和解析>>

同步练习册答案