精英家教网 > 高中数学 > 题目详情
12.已知直三棱柱ABC-A1B1C1的所有棱长都相等,D,E分别是AB,A1C1的中点,如图所示.
(1)求证:DE∥平面BCC1B1
(2)求DE与平面ABC所成角的正切值.

分析 (1)取AC的中点F,连结EF,DF,则EF∥CC1,DF∥BC,故平面DEF∥平面BCC1B1,于是DE∥平面BCC1B1
(2)在Rt△DEF中求出tan∠EDF.

解答 (1)证明:取AC的中点F,连结EF,DF,
∵D,E,F分别是AB,A1C1,AC的中点,
∴EF∥CC1,DF∥BC,又DF∩EF=F,AC∩CC1=C,
∴平面DEF∥平面BCC1B1
又DE?平面DEF,
∴DE∥平面BCC1B1
(2)解:∵EF∥CC1,CC1⊥平面BCC1B1
∴EF⊥平面BCC1B1
∴∠EDF是DE与平面ABC所成的角,
设三棱柱的棱长为1,则DF=$\frac{1}{2}$,EF=1,
∴tan∠EDF=$\frac{EF}{DF}=2$.

点评 本题考查了线面平行的判定,线面角的计算,属于中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:选择题

2.过抛物线C:y2=4x的焦点F的直线交抛物线C于A,B两点,过B与x轴平行的直线和过F与AB垂直的直线交于点N,AN与x轴交于点M,则M的横坐标的取值范围为(  )
A.(-∞,0)B.(0,2)C.(2,+∞)D.(-∞,0)∪(2,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

3.二项式${(2x-\frac{1}{x})^5}$展开式中,第四项的系数为(  )
A.40B.-40C.80D.-80

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

20.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(3,-2),且($\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{b}$,则m=-$\frac{2}{3}$.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.下列说法正确的是(  )
A.经过三点有且只有一个平面
B.经过两条直线有且只有一个平面
C.经过平面外一点有且只有一个平面与已知平面垂直
D.经过平面外一点有且只有一条直线与已知平面垂直

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

17.设函数$g(x)=({-{x^4}-{x^2}})+\frac{1}{{{e^{|x|}}-1}}$,若不等式g(x2)>g(ax)对一切x∈[-1,0)∪(0,1]恒成立,则a的取值范围是(  )
A.(-∞,-1)∪(1,+∞)B.(-1,1)C.(-1,+∞)D.(1,+∞)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

4.若一直线的参数方程为$\left\{\begin{array}{l}{x={x}_{0}+\frac{1}{2}t}\\{y={y}_{0}-\frac{\sqrt{3}}{2}t}\end{array}\right.$(t为参数),则此直线的倾斜角为(  )
A.60°B.120°C.300°D.150°

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

1.已知函数f(x)的定义域为(0,+∞),则函数$y=\frac{f(x+1)}{{\sqrt{-{x^2}-3x+4}}}$的定义域是(-1,1).

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

2.若x,y满足约束条件$\left\{\begin{array}{l}x≥1\\ x+y-3≤0\\ x-y-3≤0\end{array}\right.$,设x2+y2+4x的最大值点为A,则经过点A和B(-2,-3)的直线方程为3x-5y-9=0.

查看答案和解析>>

同步练习册答案