精英家教网 > 高中数学 > 题目详情
20.已知向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(3,-2),且($\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{b}$,则m=-$\frac{2}{3}$.

分析 根据题意,由向量加法的坐标计算公式可得($\overrightarrow{a}$+$\overrightarrow{b}$)的坐标,结合向量平行的坐标计算公式可得(-2)×4=3×(m-2),解可得m的值,即可得答案.

解答 解:根据题意,向量$\overrightarrow{a}$=(1,m),$\overrightarrow{b}$=(3,-2),
则($\overrightarrow{a}$+$\overrightarrow{b}$)=(4,m-2),
若($\overrightarrow{a}$+$\overrightarrow{b}$)∥$\overrightarrow{b}$,则有(-2)×4=3×(m-2),
解可得m=-$\frac{2}{3}$;
故答案为:-$\frac{2}{3}$

点评 本题考查向量平行的坐标表示方法,关键要掌握向量平行以及向量的坐标计算公式.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

10.某大型超市拟对店庆当天购物满288元的顾客进行回馈奖励.规定:顾客转动十二等分且质地均匀的圆形转盘(如图),待转盘停止转动时,若指针指向扇形区域,则顾客可领取此区域对应面额(单位:元)的超市代金券.假设转盘每次转动的结果互不影响.
(Ⅰ)若x0≠60,求顾客转动一次转盘获得60元代金券的概率;
(Ⅱ)某顾客可以连续转动两次转盘并获得相应奖励,当x0=20时,求该顾客第一次获得代金券的面额不低于第二次获得代金券的面额的概率;
(Ⅲ)记顾客每次转动转盘获得代金券的面额为X,当x0取何值时,X的方差最小?
(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

11.已知f(x)=x2-x+1,g(x)=kx,则“|k|≤1”是“f (x)≥g(x) 在R上恒成立”的(  )
A.充分但不必要条件B.必要但不充分条件
C.充要条件D.既不充分也不必要条件

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

8.已知a>2,f(x)=|2x-a|+|x-1|.
(Ⅰ)求函数f(x)最小值;
(Ⅱ)关于x的不等式f(x)≤2-|x-1|有解,求a的取值范围.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

15.在△ABC中,a,b,c分别是A,B,C的对边,且$\frac{tanC}{tanB}=-\frac{c}{2a+c}$.
(I)求B;
(II)若b=2$\sqrt{3}$,a+c=4,求△ABC的面积.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙、丙、丁四名同学志愿到A,B两个社区进行服务,他们每人将一枚质地均匀的骰子抛掷一次,若向上的点数为5或6,则该同学去A社区,否则去B社区.
(1)求甲、乙、丙、丁四名同学中恰有1人去A社区的概率;
(2)设X表示去A社区的人数,Y表示去B社区的人数,记ξ=X•Y,求随机变量ξ的概率分布和数学期望.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

12.已知直三棱柱ABC-A1B1C1的所有棱长都相等,D,E分别是AB,A1C1的中点,如图所示.
(1)求证:DE∥平面BCC1B1
(2)求DE与平面ABC所成角的正切值.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

9.已知命题p:?x>0,x+$\frac{4}{x}$>4,则¬p为(  )
A.¬p:?x≤0,x$+\frac{4}{x}$≤4B.¬p:?x≤0,x$+\frac{4}{x}$≤4C.¬p:?x>0,x$+\frac{4}{x}$≤4D.¬p:?x>0,x$+\frac{4}{x}$=4

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

10.已知函数f(x)的导函数为f'(x),且满足f(x)=2x2-f(-x).当x∈(-∞,0)时,f'(x)<2x;若f(m+2)-f(-m)≤4m+4,则实数m的取值范围是(  )
A.(-∞,-1]B.(-∞,-2]C.[-1,+∞)D.[-2,+∞)

查看答案和解析>>

同步练习册答案