精英家教网 > 高中数学 > 题目详情
15.某大学高等数学这学期分别用A,B两种不同的数学方式试验甲、乙两个大一新班(人数均为60人,入学数学平均分和优秀率都相同;勤奋程度和自觉性都一样).现随机抽取甲、乙两班各20名的高等数学期末考试成绩,得到茎叶图:
   
 甲班乙班合计
优秀   
不优秀   
合计   
(1)学校规定:成绩不得低于85分的为优秀,请填写下面的2×2列联表,并判断“能否在犯错误率的概率不超过0.025的前提下认为成绩优异与教学方式有关?”
下面临界值表仅供参考:
P(k2≥k)0.150.100.050.0250.0100.0050.001
k2.0722.7063.8415.0246.6357.87910.828
(参考方式:${k^2}=\frac{{n{{({ad-bc})}^2}}}{{({a+b})({c+d})({a+c})({b+d})}}$,其中n=a+b+c+d)
(2)现从甲班高等数学成绩不得低于80分的同学中随机抽取两名同学,求成绩为86分的同学至少有一个被抽中的概率.

分析 (1)根据茎叶图,填写列联表,计算观测值,对照临界值得出结论;
(2)利用列举法求出基本事件,计算所求的概率值.

解答 解:(1)根据茎叶图,填写列联表如下;

甲班乙班合计
优秀31013
不优秀171027
合计202040
计算观测值${k^2}=\frac{{40×{{({3×10-10×17})}^2}}}{13×27×20×20}≈5.584>5.024$,
因此在犯错误的概率不超过0.025的前提下,可以认为成绩优秀与数学方式有关;
(2)甲班高等数学成绩不得低于80分的6名同学记为A、B、c、d、e、f,
其中A、B为86分的学生;
从6人中随机抽取2人,基本事件是
AB、Ac、Ad、Ae、Af、Bc、Bd、Be、Bf、cd、ce、cf、de、df、ef共15种,
成绩为86分的同学至少有一个被抽中基本事件是
AB、Ac、Ad、Ae、Af、Bc、Bd、Be、Bf共6种,
故所求的概率为$P=\frac{9}{15}=\frac{3}{5}$.

点评 本题考查了独立性检验和列举法求古典概型的概率问题,是中档题.

练习册系列答案
相关习题

科目:高中数学 来源: 题型:解答题

5.已知椭圆C1的方程为$\frac{{x}^{2}}{4}$+$\frac{{y}^{2}}{2}$=1,双曲线C2的左、右焦点分别是C1的左、右顶点,而以双曲线C2的左、右顶点分别是椭圆C1的左、右焦点.
(1)求双曲线C2的方程;
(2)记O为坐标原点,过点Q(0,2)的直线l与双曲线C2相交于不同的两点E、F,若△OEF的面积为2$\sqrt{2}$,求直线l的方程.

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

6.过双曲线$\frac{{x}^{2}}{{a}^{2}}$-$\frac{{y}^{2}}{{b}^{2}}$=1(a>0,b>0)的右顶点A作斜率为-1的直线,该直线与双曲线的两条渐近线的交点分别为B、C,若$\overrightarrow{AB}$=$\frac{1}{2}$$\overrightarrow{BC}$,则双曲线的渐近线方程为(  )
A.y=±$\sqrt{2}$xB.y=±$\sqrt{3}$xC.y=±2xD.y=±$\sqrt{5}$x

查看答案和解析>>

科目:高中数学 来源: 题型:填空题

3.函数$f(x)=-x+\frac{1}{x}$在$[-2,-\frac{1}{3}]$上的最大值是$\frac{3}{2}$.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

10.某大型超市拟对店庆当天购物满288元的顾客进行回馈奖励.规定:顾客转动十二等分且质地均匀的圆形转盘(如图),待转盘停止转动时,若指针指向扇形区域,则顾客可领取此区域对应面额(单位:元)的超市代金券.假设转盘每次转动的结果互不影响.
(Ⅰ)若x0≠60,求顾客转动一次转盘获得60元代金券的概率;
(Ⅱ)某顾客可以连续转动两次转盘并获得相应奖励,当x0=20时,求该顾客第一次获得代金券的面额不低于第二次获得代金券的面额的概率;
(Ⅲ)记顾客每次转动转盘获得代金券的面额为X,当x0取何值时,X的方差最小?
(结论不要求证明)

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

20.已知向量$\overrightarrow{a}$,$\overrightarrow{b}$的夹角为60°,|$\overrightarrow{a}$|=1,|$\overrightarrow{a}$-2$\overrightarrow{b}$|=$\sqrt{13}$,则|$\overrightarrow{b}$|=(  )
A.$\sqrt{2}$B.$\frac{3}{2}$C.2$\sqrt{2}$D.2

查看答案和解析>>

科目:高中数学 来源: 题型:选择题

7.如图所示,已知二面角α-l-β的平面角为θ,PA⊥α,PB⊥β,A、B为垂足,且PA=4,PB=5,设A、B到棱l的距离分别为x、y,当θ变化时,点(x,y)的轨迹是下列图形中的(  )
A.B.C.D.

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

4.已知数列{an}的前n项和Sn=10n-n2(n∈N*).
(1)求数列{an}的通项公式;
(2)求Sn的最大值;
(3)设bn=|an|,求数列{bn}的前10项和T10

查看答案和解析>>

科目:高中数学 来源: 题型:解答题

5.甲、乙、丙、丁四名同学志愿到A,B两个社区进行服务,他们每人将一枚质地均匀的骰子抛掷一次,若向上的点数为5或6,则该同学去A社区,否则去B社区.
(1)求甲、乙、丙、丁四名同学中恰有1人去A社区的概率;
(2)设X表示去A社区的人数,Y表示去B社区的人数,记ξ=X•Y,求随机变量ξ的概率分布和数学期望.

查看答案和解析>>

同步练习册答案